平行性質(zhì)教案6篇

時間:2024-04-05 作者:Monody 備課教案

優(yōu)秀的教案能夠幫助教師更好地促進教育教學的有效合作,嚴謹?shù)慕贪缚梢詭椭覀儽苊饨虒W中的盲點和遺漏,以下是范文社小編精心為您推薦的平行性質(zhì)教案6篇,供大家參考。

平行性質(zhì)教案6篇

平行性質(zhì)教案篇1

【教學目標】

1。經(jīng)歷從性質(zhì)公理推出性質(zhì)2的過程;掌握平行線的性質(zhì),并能用它們作簡單的邏輯推理;

2。感受原命題與逆命題,從而了解平行線的性質(zhì)公理與判定公理的區(qū)別,能在推理過程正確使用。

【教學重點】

平行線的性質(zhì)以及應用。

【教學難點】

平行線的性質(zhì)公理與判定公理的區(qū)別。

【對話設(shè)計】

?探索1〗反過來也成立嗎

過去我們學過:如果兩個數(shù)的和為0,這兩個數(shù)互為相反數(shù)。反過來,如果兩個數(shù)互為相反數(shù),那么這兩個數(shù)的和為0。這兩個句子都是正確的。

現(xiàn)在換一個例子:如果兩個角是對頂角,那么這兩個角相等。它是對的。反過來,如果兩個角相等,這兩個角是對頂角。對嗎?

再看下面的'例子:如果一個整數(shù)個位上的數(shù)字是5,那么它一定能夠被5整除。對嗎?這句話反過來怎么說?對不對?

?結(jié)論〗如果一個句子是正確的,反過來說(因果對調(diào)),就未必正確。

?探索2〗

上一節(jié)課,我們學過:同位角相等,兩直線平行。反過來怎么說?它還是對的嗎?完成p21的探究,寫出你的猜想。

?推理舉例〗

如果把平行線性質(zhì)1———"兩直線平行,同位角相等"看作是基本事實(公理),我們可以利用這個公理證明平行線性質(zhì)2:"兩直線平行,內(nèi)錯角相等"。

如圖,已知:直線a、b被直線c所截,且a∥b,

求證:∠1=∠2。

證明:∵a∥b,

∴∠1=∠3(__________________)。

∵∠3=∠2(對頂角相等),

∴∠1=∠2(等量代換)。

?探索3〗下面我們來證明平行線的性質(zhì)3:兩直線平行,同旁內(nèi)角互補。請模仿范例寫出證明。

如圖,已知:直線a、b被直線c所截,且a∥b,

求證:∠1+∠2=180?。

證明:

?探索4〗

如圖:直線a、b被直線c所截,

(1)若a∥b,可以得到∠1=∠2。根據(jù)什么?

(2)若∠1=∠2,可以得到a∥b。根據(jù)什么?根據(jù)和(1)一樣嗎?

?練習1〗如圖,已知直線a、b被直線c所截,在括號內(nèi)為下面各小題的推理填上適當?shù)母鶕?jù):

(1)∵a∥b,∴∠1=∠3(___________________);

(2)∵∠1=∠3,∴a∥b(_________________)。

(3)∵a∥b,∴∠1=∠2(__________________);

(4)∴a∥b,∴∠1+∠4=180?

(_____________________________________)

(5)∵∠1=∠2,∴a∥b(___________________);

(6)∵∠1+∠4=180?,∴a∥b(_______________)。

?練習2〗

畫兩條平行線,說出你畫圖的根據(jù);再任意畫一條直線和這兩條平行線都相交,寫出所生成的角當中的一對內(nèi)錯角,并說明這一對角一定相等的理由。

?作業(yè)〗

p25。1、2、3、4。

平行性質(zhì)教案篇2

教學目標:

1、經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空間觀念,推理能力和有條理表達能力。

2、經(jīng)歷探索直線平行的性質(zhì)的過程,掌握平行線的三條性質(zhì),并能用它們進行簡單的推理和計算。

重點:探索并掌握平行線的性質(zhì),能用平行線性質(zhì)進行簡單的推理和計算。

難點:能區(qū)分平行線的性質(zhì)和判定,平行線的性質(zhì)與判定的混合應用。

教學過程

一、引導學生逆向思維

現(xiàn)在同學們已經(jīng)掌握了利用同位角相等,或者內(nèi)錯角相等,或者同旁內(nèi)角互補,判定兩條直線平行的三種方法。在這一節(jié)課里:大家把思維的指向反過來:如果兩條直線平行,那么同位角、內(nèi)錯角、同旁內(nèi)角的數(shù)量關(guān)系又該如何表達?

二、實踐探究

1、學生畫圖活動:用直尺和三角尺畫出兩條平行線a∥b,再畫一條截線c與直線a、b相交,標出所形成的八個角(如課本p21圖5。3—1)。

2、學生測量這些角的度數(shù),把結(jié)果填入表內(nèi)。

角∠1∠2∠3∠4∠5∠6∠7∠8

度數(shù)

3、學生根據(jù)測量所得數(shù)據(jù)作出猜想。

(1)圖中哪些角是同位角?它們具有怎樣的`數(shù)量關(guān)系?(2)圖中哪些角是內(nèi)錯角?它們具有怎樣的數(shù)量關(guān)系?

(3)圖中哪些角是同旁內(nèi)角?它們具有怎樣的數(shù)量關(guān)系?

4、學生驗證猜測。

學生活動:再任意畫一條截線d,同樣度量并計算各個角的度數(shù),你的猜想還成立嗎?

5、師生歸納平行線的性質(zhì),教師板書。

平行線具有性質(zhì):

性質(zhì)1:兩條平行線被第三條直線所截,同位角相等,簡稱為兩直線平行,同位角相等。

性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等,簡稱為兩直線平行,內(nèi)錯相等。

性質(zhì)3:兩條直線按被第三條線所截,同旁內(nèi)角互補,簡稱為兩直線平行,同旁內(nèi)角互補。

教師讓學生結(jié)合右圖,用符號語言表達平行線的這三條性質(zhì),教師同時板書平行線的性質(zhì)和平行線的判定。

平行線的性質(zhì)平行線的判定

因為a∥b,因為∠1=∠2,

所以∠1=∠2所以a∥b。

因為a∥b,因為∠2=∠3,

所以∠2=∠3,所以a∥b。

因為a∥b,因為∠2+∠4=180°,

所以∠2+∠4=180°,所以a∥b。

6、教師引導學生理清平行線的性質(zhì)與平行線判定的區(qū)別。

學生交流后,師生歸納:兩者的條件和結(jié)論正好相反:

由角的數(shù)量關(guān)系(指同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補),得出兩條直線平行的論述是平行線的判定,這里角的關(guān)系是條件,兩直線平行是結(jié)論。

由已知的兩條直線平行得出角的數(shù)量關(guān)系(指同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補)的論述是平行線的性質(zhì),這里兩直線平行是條件,角的關(guān)系是結(jié)論。

7、進一步研究平行線三條性質(zhì)之間的關(guān)系。

教師:大家能根據(jù)性質(zhì)1,推出性質(zhì)2成立的道理嗎?

結(jié)合上圖,教師啟發(fā)分析:考察性質(zhì)1、性質(zhì)2的結(jié)論發(fā)生了什么變化?學生回答∠1換成∠3,教師再問∠1與∠3有什么關(guān)系?并完成說理過程,教師糾正學生錯誤,規(guī)范地給出說理過程。

因為a∥b,所以∠1=∠2(兩直線平行,同位角相等);

又∠3=∠1(對頂角相等),所以∠2=∠3。

教師說明:這是有兩步的說理,第一步推理根據(jù)平行線性質(zhì)1,第二步推理的條件不僅有∠1=∠2,還有∠3=∠1。∠2=∠3是根據(jù)等式性質(zhì)。根據(jù)等式性質(zhì)得到的結(jié)論可以不寫理由。

學生仿照以下說理,說出如何根據(jù)性質(zhì)1得到性質(zhì)3的道理。

8、平行線性質(zhì)應用。

講解課本p23例題

三、鞏固練習:課本練習(p22)。

四、作業(yè):課本p22。1,2,3,4,6。

平行性質(zhì)教案篇3

?學習目標】:1.掌握平行四邊形的有關(guān)概念及性質(zhì)(對邊平行且相等,對角相等)

?回顧與思考】:

活動一:

準備兩個全等的三角形,將它們相等的一組邊重合,得到一個四邊形.

(1)你得到了怎樣的四邊形?與同伴交流一下

(2)觀察拼出的這樣一個四邊形,這個四邊形的對邊有怎樣的位置關(guān)系?為什么?

(3)平行四邊形的定義: 的四邊形叫做平行四邊形.

平行四邊形 連成的線段叫做對角線

如圖,四邊形abcd是平行四邊形,

記作” ”

活動二:(1)觀察你所拼的平行四邊形中,有哪些相等的線段、相等的角?為什么?

(2)平行四邊形的性質(zhì):平行四邊形的對邊

平行四邊形的對角

幾何語言:

∵四邊形abcd是平行四邊形(已知)

∴ab= ,bc= ( )

∠a = ,∠b = ( )

?知識應用】:

1. □abcd中,ab=3,bc=5,則ad= cd= 。

2. □abcd中,∠b=60°,則∠a= ,∠c= ,∠d= 。

3. 如圖:四邊形abcd是平行四邊形。

(1)邊ab、bc的長度

(2)求∠d、∠c度數(shù)。

?當堂反饋(小測)】:

1.已知□abcd中,∠b=70°,則∠a=______,∠c=______,∠d=______.

2.在□abcd中,∠a +∠c =270°,則∠b=______,∠c=______.;

3.在□abcd中,ab=3,bc=4,則□abcd的周長等于_______.

4.平行四邊形的周長等于56 cm,兩鄰邊長的比為3∶1,那么這個平行四邊形較長的邊長為_______.

5.已知,如圖,□abcd中,∠a=70°,ad=5 cm,求∠b,∠c,∠d的度數(shù)及bc的長度。

6.已知,如圖,□abcd中,∠cad=20°,∠d=50°,求∠b,∠bcd的度數(shù)

?鞏固提升】:

1、已知□abcd中,∠b=70°,則∠a =______,∠d =______。

2、在□abcd中,ab=3,bc=4,則□abcd的`周長等于_______。

3、在□abcd中,已知bc=8,周長等于24, 則cd=_______。

4、 在□abcd中,∠a=65°,則∠d的度數(shù)是 ( )

a. 105° b. 115° c. 125° d. 65°

5、在□abcd中,∠b比∠a大20°,則∠d的度數(shù)是 ( )

a. 80° b. 90° c. 100° d. 110°

6、一個四邊形的三個內(nèi)角的度數(shù)依次如下選項,其中是平行四邊形的是( )

a、88°,108°,88°b、88°,104°,108°

c、88°,92°,88° d、88°,92°,92°

7、□abcd中,∠a:∠b:∠c:∠d的值可以是( )

a、1:2:3:4 b 、1:2:2:1 c、2:2:1:1 d、 2:1:2:1

8、已知,如圖,□abcd中,∠a=65°,ad=6 cm,求∠b,∠c,∠d的度數(shù)及bc的長度。

9、如圖,□abcd中,∠abc的平分線交ad于e,若∠aeb=20°,求∠d的度數(shù)

10.四邊形abcd是平行四邊形,它的四條邊中哪些線段可以通過平移而互相得到?

平行性質(zhì)教案篇4

一、創(chuàng)設(shè)實驗情境,引發(fā)學生學習興趣,引入本節(jié)課要研究的內(nèi)容。

試驗1:教師以窗格為例,已知窗戶的橫格是平行的,用三角尺進行檢驗,發(fā)現(xiàn)同位角相等。這個結(jié)論是否具有一般性呢?

試驗2:學生試驗(發(fā)印制好的`平行線紙單)。

(1)要求學生任意畫一條直線c與直線a、b相交;

(2)選一對同位角來度量,看看這對同位角是否相等。

學生歸納:兩條平行線被第三條直線所截,同位角相等。

二、主體探究,引導學生探索平行線的其他性質(zhì)以及對命題有一個初步的認識。

活動1

問題討論:

我們知道兩條平行線被第三條直線所截,不但形成有同位角,還有內(nèi)錯角、同旁內(nèi)角。我們已經(jīng)知道“兩條平行線被第三條直線所截,同位角相等”。那么請同學們想一想:兩條平行線被第三條直線所截,內(nèi)錯角、同旁內(nèi)角有什么關(guān)系?(分組討論,每一小組推薦一位同學回答)。

教師活動設(shè)計:引導學生討論并回答。

學生口答,教師板書,并要求學生學習推理的書寫格式。

活動2

總結(jié)平行線的性質(zhì)。

性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等。

簡單說成:兩直線平行,內(nèi)錯角相等。

性質(zhì)3:兩條平行直線被第三條直線所截,同旁內(nèi)角互補。

簡單說成:兩直線平行,同旁內(nèi)角互補。

平行性質(zhì)教案篇5

【教學目標】

◆知識目標:理解掌握平行線的性質(zhì)并能應用

◆能力目標:培養(yǎng)學生形成觀察辨別、逆向推理等數(shù)學方法,培養(yǎng)學生良好的創(chuàng)造性思維能力、逆向思維能力和嚴密的推理過程。

◆情感目標:通過多種教學活動,樹立自信,自強,自主感,由此激發(fā)學習數(shù)學的興趣,增強學好數(shù)學的信心。

【教學重點、難點】

◆重點:平行線的性質(zhì)是重點

◆難點:例4是難點

【教學過程】

一、知識回顧:

1、平行線的判定

2、平行線的性質(zhì)

二、1、合作學習:

如圖,直線ab∥cd,并被直線ef所截?!?與∠3相等嗎?∠3與∠4的'和是多少度?思考下列幾個問題:

(1)圖中有哪幾對角相等?

(2)∠3與∠1有什么關(guān)系?∠4與∠2有什么關(guān)系?

2、你發(fā)現(xiàn)平行線還有哪些性質(zhì)?

平行線的性質(zhì):

cfa432de1b兩條平行線被第三條直線所截,內(nèi)錯角相等。簡單地說,兩直線平行,內(nèi)錯角相等。

兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡單地說,兩直線平行,同旁內(nèi)角互補。

3、做一做:

如圖,ab,cd被ef所截,ab∥cd(填空)

若∠1=120°,則∠2=()∠3=-∠1=()

4、例3如圖1-14,已知ab∥cd,ad∥bc。判斷∠1與∠2是否相等,并說明理由。

思考下列幾個問題:

(1)∠1與∠bad是一對什么的角?它們是否相等?為什么?

(2)∠2與∠bad是一對什么的角?它們是否相等?為什么?

(3)那么∠1與∠2是否相等?為什么?解:∠1=∠2 ∵ab∥cd(已知)

∴∠1+∠bad=180°(兩直線平行,同旁內(nèi)角互補)∵ad∥bc(已知)

∴∠2+∠bad=180°(兩直線平行,同旁內(nèi)角互補)

e1b3da2fcd1a2bc圖1—14∴∠1=∠2(同角的補角相等)

討論:還有其它解法嗎?如不用“兩直線平行,同旁內(nèi)角互補”這個性質(zhì)是否可以解?

5、練一練:(p、14課內(nèi)練習

1、2)

6、例4如圖1-15,已知∠abc+∠c=180°,bd平分∠abc。

∠abcbd與∠d相等嗎?請說明理由。思考下列幾個問題:

(1)ab與cd平行嗎?為什么?

(2)∠d與∠abd是一對什么的角?它們是否相等?為什么?

(3)∠cbd與∠abd相等嗎?為什么?

解:∠d=∠cbd ∵∠abc+∠c=180°(已知)

∴ab∥cd(同旁內(nèi)角互補,兩直線平行)∴∠d=∠abd(兩直線平行,內(nèi)錯角相等)

∵bd平分∠abc(已知)

∴∠cbd=∠abd=∠d想一想:是否還有其它方法?(用三角形內(nèi)角和定理等)

7、練一練:

如圖,已知∠1=∠2,∠3=65°,求∠4的度數(shù)。

三、拓展

12a34bd圖1-15ccd

1、如圖1,已知ad∥bc,∠bad=∠bcd。判斷ab與cd是否平行,并說明理由

2、如圖2,已知ab∥cd,ae∥df。請說明∠bae=∠cdf d c

aba圖1 b fecd

四、知識整理:

1、平行線的性質(zhì):

兩條平行線被第三條直線所截,內(nèi)錯角相等。簡單地說,兩直線平行,內(nèi)錯角相等。兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡單地說,兩直線平行,同旁內(nèi)角互補。

2、思維方法:如不能直接證明其成立,則需證明它們都與第三個量相等

3、要注意一題多解

五、布置作業(yè)

p、15作業(yè)題及作業(yè)本

平行性質(zhì)教案篇6

教學目標

(1)知識與技能:

探索平行線的性質(zhì)定理,并掌握它們的圖形語言、文字語言、符號語言;會用平行線的性質(zhì)定理進行簡單的計算、證明。

(2)過程與方法:

在定理的學習中,鍛煉觀察能力,嘗試與他人合作開展討論、研究,并表達自己的見解。

(3)情感態(tài)度、價值觀:

在課堂練習中,體驗幾何與實際生活的密切聯(lián)系。

教學重點

平行線的性質(zhì)。

教學難點

平行線的性質(zhì)定理與判定定理的區(qū)別。

教學模式

發(fā)現(xiàn)教學模式。

教學方法

直觀教學法、發(fā)現(xiàn)教學法、主體互動法。

教學手段

計算機輔助教學。

教學過程

教學環(huán)節(jié)

教師活動

學 生活 動

教 學 意 圖

復習提 問

復習提問:

判定兩直線平行的方法有哪些?怎樣用符號語言表述?

思考、回答

了解學生的認知基礎(chǔ),讓全體學生對前一節(jié)的內(nèi)容進行回顧,并為新課的學習做準備。

?大屏幕】請每位同學利用手中的條格紙,任意選取其中的兩條線作l1、l2,再隨意畫一條直線l3與l1、l2相交,用量角器量得圖中的八個角,并填表(見附錄1)

隨后同桌同學交換,再次測量、填表。

關(guān)注:

對于沒有帶量角器的學生,鼓勵他們在無需測量的情況下,找出圖中各角的度量關(guān)系。

畫圖、測量、填表

思考、動手嘗試,方法可能多種多樣

激發(fā)學生探究數(shù)學問題的興趣,使學生獲得較強的感性認識,便于探索兩直線平行的性質(zhì)定理。關(guān)注學生的實際操作,以及操作中的思考和學生學習數(shù)學的興趣。

給學生留有充分的探索和交流的空間,鼓勵學生利用多種方法探索,這對于發(fā)展學生的空間觀念,理解平行線的性質(zhì)是十分重要的。

【提問】能否將我們發(fā)現(xiàn)的結(jié)論給予較為準確的文字表述?

總結(jié)、表述

鍛煉學生的歸納、表達能力,鼓勵學生敢于發(fā)表自己的觀點。

【大屏幕】平行線的性質(zhì):

定理1。兩條平行線被第三條直線所截,同位角相等。簡言之: 兩直線平行,同位角相等。

定理2。兩條平行線被第三條直線所截,內(nèi)錯角相等。簡言之: 兩直線平行,內(nèi)錯角相等。

定理3。兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡言之: 兩直線平行,同旁內(nèi)角互補。

?提問】討論這些性質(zhì)定理與前面所學的判定定理有什么不同?

理解、記憶、思考、討論、回答

進行文字語言的規(guī)范。

避免出現(xiàn)概念的混淆,滲透“命題” 與“逆命題”的概念,突破本節(jié)課的.難點避免出現(xiàn)概念的混淆,突破本節(jié)課的難點。

?提問】回憶平行線判定定理的符號語言的表述,參照附錄1的圖形,將上述性質(zhì)定理怎樣用符號語言表達出呢?

?大屏幕】符號語言:(不唯一)

性質(zhì)定理1?!遧1∥l2

∴∠1=∠5 (兩直線平行,同位角相等)

性質(zhì)定理1?!遧1∥l2

∴∠3=∠5 (兩直線平行,內(nèi)錯角相等)

性質(zhì)定理1?!遧1∥l2

∴∠3+∠6=180o (兩直線平行,同旁內(nèi)角互補)

思考、一位同學板書。

觀察、理解

為今后進一步學習推理打基礎(chǔ),并進行符號語言的規(guī)范。

?提問】我們能否使用平行線的性質(zhì)定理1說出性質(zhì)定理2、3成立的道理呢?

鼓勵學生使用符號語言表述推導過程。

?大屏幕】規(guī)范定理的推導過程。

思考、嘗試回答

觀察

培養(yǎng)學生的邏輯思維能力以及嚴謹?shù)闹螌W態(tài)度。逐步鍛煉學生的推理能力,并進一步鞏固對定理的理解及語言的規(guī)范,感受成功的喜悅,樹立學習數(shù)學的信心。

?大屏幕】例:如圖是一塊梯形鐵片的殘余部分,量得∠a=100o,∠b=115o,梯形另外兩個角分別是多少度?

思考、嘗試運用符號語言進行推理。

要求學生會用平行線的性質(zhì)進行計算,只需算出所求的度數(shù)即可。初次計算格式不一定很完整。

?大屏幕】(見附錄2)

思考、討論、解釋結(jié)論

寓教于樂,進一步讓學生感受“認識來源于實踐”。

?大屏幕】鞏固練習(見附錄3)

積極思考、展開討論、踴躍回答

循序漸進提高難度、提高靈活運用定理的能力,感受解決有關(guān)平行問題的關(guān)鍵,突破難點,并進一步提高用符號語言進行推理的能力。

?大屏幕】探究題(見附錄4)

?備注】如果時間不允許的話,該題可作為課后作業(yè),并給予簡單的提示。

猜測、討論,尋找規(guī)律

使重點中學學生的思路進一步得以拓寬,初次接觸輔助線的添加,使學生能力得以提高。

課堂小結(jié)

?提問】本節(jié)課我們學習了哪些定理?在表述這些定理時,應注意什么呢?

回顧、歸納

將本節(jié)課知識進行回顧。

布置

作業(yè)

?大屏幕】布置作業(yè):教材p67的4、5;p68的6、7;p69的11、12

課后完成

課后能進一步鞏固,鼓勵學生去發(fā)現(xiàn)身邊的數(shù)學問題。