教案在起草的過(guò)程中,老師肯定要考慮聯(lián)系實(shí)際,借助教案我們可以讓我們的教學(xué)質(zhì)量得到提升,范文社小編今天就為您帶來(lái)了初三數(shù)學(xué)數(shù)與式教案6篇,相信一定會(huì)對(duì)你有所幫助。
初三數(shù)學(xué)數(shù)與式教案篇1
了解中心對(duì)稱圖形的概念及中心對(duì)稱圖形的對(duì)稱中心的概念,掌握這兩個(gè)概念的應(yīng)用.
復(fù)習(xí)兩個(gè)圖形關(guān)于中心對(duì)稱的有關(guān)概念,利用這個(gè)所學(xué)知識(shí)探索一個(gè)圖形是中心對(duì)稱圖形的有關(guān)概念及其他的運(yùn)用.
重點(diǎn)
中心對(duì)稱圖形的有關(guān)概念及其它們的運(yùn)用.
難點(diǎn)
區(qū)別關(guān)于中心對(duì)稱的兩個(gè)圖形和中心對(duì)稱圖形.
一、復(fù)習(xí)引入
1.(老師口問(wèn))口答:關(guān)于中心對(duì)稱的兩個(gè)圖形具有什么性質(zhì)?
(老師口述):關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過(guò)對(duì)稱中心,而且被對(duì)稱中心所平分.
關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形.
2.(學(xué)生活動(dòng))作圖題.
(1)作出線段ao關(guān)于o點(diǎn)的對(duì)稱圖形,如圖所示.
(2)作出三角形aob關(guān)于o點(diǎn)的對(duì)稱圖形,如圖所示.
延長(zhǎng)ao使oc=ao,延長(zhǎng)bo使od=bo,連接cd,則△cod即為所求,如圖所示.
二、探索新知
從另一個(gè)角度看,上面的(1)題就是將線段ab繞它的中點(diǎn)旋轉(zhuǎn)180°,因?yàn)閛a=ob,所以,就是線段ab繞它的中點(diǎn)旋轉(zhuǎn)180°后與它本身重合.
上面的(2)題,連接ad,bc,則剛才的關(guān)于中心o對(duì)稱的兩個(gè)圖形就成了平行四邊形,如圖所示.
∵ao=oc,bo=od,∠aob=∠cod
∴△aob≌△cod
∴ab=cd
也就是,abcd繞它的兩條對(duì)角線交點(diǎn)o旋轉(zhuǎn)180°后與它本身重合.
因此,像這樣,把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心.
(學(xué)生活動(dòng))例1從剛才講的線段、平行四邊形都是中心對(duì)稱圖形外,每一位同學(xué)舉出三個(gè)圖形,它們也是中心對(duì)稱圖形.
老師點(diǎn)評(píng):老師邊提問(wèn)學(xué)生邊解答的特點(diǎn).
(學(xué)生活動(dòng))例2請(qǐng)說(shuō)出中心對(duì)稱圖形具有什么特點(diǎn)?
老師點(diǎn)評(píng):中心對(duì)稱圖形具有勻稱美觀、平穩(wěn)的特點(diǎn).
例3求證:如圖,任何具有對(duì)稱中心的四邊形是平行四邊形.
分析:中心對(duì)稱圖形的對(duì)稱中心是對(duì)應(yīng)點(diǎn)連線的交點(diǎn),也是對(duì)應(yīng)點(diǎn)間的線段中點(diǎn),因此,直接可得到對(duì)角線互相平分.
證明:如圖,o是四邊形abcd的對(duì)稱中心,根據(jù)中心對(duì)稱性質(zhì),線段ac,bd點(diǎn)o,且ao=co,bo=do,即四邊形abcd的對(duì)角線互相平分,因此,四邊形abcd是平行四邊形.
三、課堂小結(jié)(學(xué)生歸納,老師點(diǎn)評(píng))
本節(jié)課應(yīng)掌握:
1.中心對(duì)稱圖形的有關(guān)概念;
2.應(yīng)用中心對(duì)稱圖形解決有關(guān)問(wèn)題.
四、作業(yè)布置
教材第70頁(yè)習(xí)題8,9,10.
初三數(shù)學(xué)數(shù)與式教案篇2
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生知道當(dāng)直角三角形的銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也都固定這一事實(shí).
(二)能力訓(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生會(huì)觀察、比較、分析、概括等邏輯思維能力.
(三)德育滲透點(diǎn)
引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.重點(diǎn):使學(xué)生知道當(dāng)銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也是固定的這一事實(shí).
2.難點(diǎn):學(xué)生很難想到對(duì)任意銳角,它的對(duì)邊、鄰邊與斜邊的比值也是固定的事實(shí),關(guān)鍵在于教師引導(dǎo)學(xué)生比較、分析,得出結(jié)論.
三、教學(xué)步驟
(一)明確目標(biāo)
1.如圖6-1,長(zhǎng)5米的梯子架在高為3米的墻上,則a、b間距離為多少米?
2.長(zhǎng)5米的梯子以傾斜角∠cab為30°靠在墻上,則a、b間的距離為多少?
3.若長(zhǎng)5米的梯子以傾斜角40°架在墻上,則a、b間距離為多少?
4.若長(zhǎng)5米的梯子靠在墻上,使a、b間距為2米,則傾斜角∠cab為多少度?
前兩個(gè)問(wèn)題學(xué)生很容易回答.這兩個(gè)問(wèn)題的設(shè)計(jì)主要是引起學(xué)生的回憶,并使學(xué)生意識(shí)到,本章要用到這些知識(shí).但后兩個(gè)問(wèn)題的設(shè)計(jì)卻使學(xué)生感到疑惑,這對(duì)初三年級(jí)這些好奇、好勝的學(xué)生來(lái)說(shuō),起到激起學(xué)生的學(xué)習(xí)興趣的作用.同時(shí)使學(xué)生對(duì)本章所要學(xué)習(xí)的內(nèi)容的特點(diǎn)有一個(gè)初步的了解,有些問(wèn)題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識(shí)是不能解決的,解決這類問(wèn)題,關(guān)鍵在于找到一種新方法,求出一條邊或一個(gè)未知銳角,只要做到這一點(diǎn),有關(guān)直角三角形的其他未知邊角就可用學(xué)過(guò)的知識(shí)全部求出來(lái).
通過(guò)四個(gè)例子引出課題.
(二)整體感知
1.請(qǐng)每一位同學(xué)拿出自己的三角板,分別測(cè)量并計(jì)算30°、45°、60°角的對(duì)邊、鄰邊與斜邊的比值.
學(xué)生很快便會(huì)回答結(jié)果:無(wú)論三角尺大小如何,其比值是一個(gè)固定的值.程度較好的學(xué)生還會(huì)想到,以后在這些特殊直角三角形中,只要知道其中一邊長(zhǎng),就可求出其他未知邊的長(zhǎng).
2.請(qǐng)同學(xué)畫一個(gè)含40°角的直角三角形,并測(cè)量、計(jì)算40°角的對(duì)邊、鄰邊與斜邊的比值,學(xué)生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的.大部分學(xué)生可能會(huì)想到,當(dāng)銳角取其他固定值時(shí),其對(duì)邊、鄰邊與斜邊的比值也是固定的嗎?
這樣做,在培養(yǎng)學(xué)生動(dòng)手能力的同時(shí),也使學(xué)生對(duì)本節(jié)課要研究的知識(shí)有了整體感知,喚起學(xué)生的求知欲,大膽地探索新知.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過(guò)程
1.通過(guò)動(dòng)手實(shí)驗(yàn),學(xué)生會(huì)猜想到“無(wú)論直角三角形的銳角為何值,它的對(duì)邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個(gè)命題呢?學(xué)生這時(shí)的思維很活躍.對(duì)于這個(gè)問(wèn)題,部分學(xué)生可能能解決它.因此教師此時(shí)應(yīng)讓學(xué)生展開(kāi)討論,獨(dú)立完成.
2.學(xué)生經(jīng)過(guò)研究,也許能解決這個(gè)問(wèn)題.若不能解決,教師可適當(dāng)引導(dǎo):
若一組直角三角形有一個(gè)銳角相等,可以把其
頂點(diǎn)a1,a2,a3重合在一起,記作a,并使直角邊ac1,ac2,ac3……落在同一條直線上,則斜邊ab1,ab2,ab3……落在另一條直線上.這樣同學(xué)們能解決這個(gè)問(wèn)題嗎?引導(dǎo)學(xué)生獨(dú)立證明:易知,b1c1∥b2c2∥b3c3……,∴△ab1c1∽△ab2c2∽△ab3c3∽……,∴
形中,∠a的對(duì)邊、鄰邊與斜邊的比值,是一個(gè)固定值.
通過(guò)引導(dǎo),使學(xué)生自己獨(dú)立掌握了重點(diǎn),達(dá)到知識(shí)教學(xué)目標(biāo),同時(shí)培養(yǎng)學(xué)生能力,進(jìn)行了德育滲透.
而前面導(dǎo)課中動(dòng)手實(shí)驗(yàn)的設(shè)計(jì),實(shí)際上為突破難點(diǎn)而設(shè)計(jì).這一設(shè)計(jì)同時(shí)起到培養(yǎng)學(xué)生思維能力的作用.
練習(xí)題為 作了孕伏同時(shí)使學(xué)生知道任意銳角的對(duì)邊與斜邊的比值都能求出來(lái).
(四)總結(jié)與擴(kuò)展
1.引導(dǎo)學(xué)生作知識(shí)總結(jié):本節(jié)課在復(fù)習(xí)勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過(guò)動(dòng)手實(shí)驗(yàn)、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對(duì)邊、鄰邊與斜邊的比值也是固定的.
教師可適當(dāng)補(bǔ)充:本節(jié)課經(jīng)過(guò)同學(xué)們自己動(dòng)手實(shí)驗(yàn),大膽猜測(cè)和積極思考,我們發(fā)現(xiàn)了一個(gè)新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚(yáng)這種創(chuàng)新精神,變被動(dòng)學(xué)知識(shí)為主動(dòng)發(fā)現(xiàn)問(wèn)題,培養(yǎng)自己的創(chuàng)新意識(shí).
2.擴(kuò)展:當(dāng)銳角為30°時(shí),它的對(duì)邊與斜邊比值我們知道.今天我們又發(fā)現(xiàn),銳角任意時(shí),它的對(duì)邊與斜邊的比值也是固定的.如果知道這個(gè)比值,已知一邊求其他未知邊的問(wèn)題就迎刃而解了.看來(lái)這個(gè)比值很重要,下節(jié)課我們就著重研究這個(gè)“比值”,有興趣的同學(xué)可以提前預(yù)習(xí)一下.通過(guò)這種擴(kuò)展,不僅對(duì)正、余弦概念有了初步印象,同時(shí)又激發(fā)了學(xué)生的興趣.
四、布置作業(yè)
本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學(xué)生預(yù)習(xí)正余弦概念.
五、板書設(shè)計(jì)
初三數(shù)學(xué)數(shù)與式教案篇3
理解一元二次方程求根公式的推導(dǎo)過(guò)程,了解公式法的概念,會(huì)熟練應(yīng)用公式法解一元二次方程.
復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過(guò)程,引入ax2+bx+c=0(a≠0)的求根公式的推導(dǎo),并應(yīng)用公式法解一元二次方程.
重點(diǎn)
求根公式的推導(dǎo)和公式法的應(yīng)用.
難點(diǎn)
一元二次方程求根公式的推導(dǎo).
一、復(fù)習(xí)引入
1.前面我們學(xué)習(xí)過(guò)解一元二次方程的“直接開(kāi)平方法”,比如,方程
(1)x2=4(2)(x-2)2=7
提問(wèn)1這種解法的(理論)依據(jù)是什么?
提問(wèn)2這種解法的局限性是什么?(只對(duì)那種“平方式等于非負(fù)數(shù)”的特殊二次方程有效,不能實(shí)施于一般形式的二次方程.)
2.面對(duì)這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開(kāi)平方”的形式.)
(學(xué)生活動(dòng))用配方法解方程2x2+3=7x
(老師點(diǎn)評(píng))略
總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點(diǎn)評(píng)).
(1)先將已知方程化為一般形式;
(2)化二次項(xiàng)系數(shù)為1;
(3)常數(shù)項(xiàng)移到右邊;
(4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;
(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0(2)ax2+bx+3=0
如果這個(gè)一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請(qǐng)同學(xué)獨(dú)立完成下面這個(gè)問(wèn)題.
問(wèn)題:已知ax2+bx+c=0(a≠0),試推導(dǎo)它的兩個(gè)根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個(gè)方程一定有解嗎?什么情況下有解?)
分析:因?yàn)榍懊婢唧w數(shù)字已做得很多,我們現(xiàn)在不妨把a(bǔ),b,c也當(dāng)成一個(gè)具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去.
解:移項(xiàng),得:ax2+bx=-c
二次項(xiàng)系數(shù)化為1,得x2+bax=-ca
配方,得:x2+bax+(b2a)2=-ca+(b2a)2
即(x+b2a)2=b2-4ac4a2
∵4a2>0,當(dāng)b2-4ac≥0時(shí),b2-4ac4a2≥0
∴(x+b2a)2=(b2-4ac2a)2
直接開(kāi)平方,得:x+b2a=±b2-4ac2a
即x=-b±b2-4ac2a
∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c而定,因此:
(1)解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時(shí),將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.
(2)這個(gè)式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
公式的理解
(4)由求根公式可知,一元二次方程最多有兩個(gè)實(shí)數(shù)根.
例1用公式法解下列方程:
(1)2x2-x-1=0(2)x2+1.5=-3x
(3)x2-2x+12=0(4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可.
補(bǔ):(5)(x-2)(3x-5)=0
三、鞏固練習(xí)
教材第12頁(yè)練習(xí)1.(1)(3)(5)或(2)(4)(6).
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:
(1)求根公式的概念及其推導(dǎo)過(guò)程;
(2)公式法的概念;
(3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項(xiàng)要變號(hào),盡量讓a>0;2)找出系數(shù)a,b,c,注意各項(xiàng)的系數(shù)包括符號(hào);3)計(jì)算b2-4ac,若結(jié)果為負(fù)數(shù),方程無(wú)解;4)若結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果.
(4)初步了解一元二次方程根的情況.
五、作業(yè)布置
教材第17頁(yè)習(xí)題4
初三數(shù)學(xué)數(shù)與式教案篇4
一、內(nèi)容簡(jiǎn)介
本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。
關(guān)鍵信息:
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過(guò)學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問(wèn)題,對(duì)可能的答案做出假設(shè)與猜想,并通過(guò)多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
二、學(xué)習(xí)者分析:
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
①同類項(xiàng)的定義。
②合并同類項(xiàng)法則
③多項(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
三、教學(xué)/學(xué)習(xí)目標(biāo)及其對(duì)應(yīng)的課程標(biāo)準(zhǔn):
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理數(shù)、實(shí)數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。
(四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。
(五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見(jiàn)解;能從交流中獲益。
四、教育理念和教學(xué)方式:
1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過(guò)程。當(dāng)學(xué)生迷路的時(shí)候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時(shí)候,教師不是拖著他走,而是喚起他內(nèi)在的精神動(dòng)力,鼓勵(lì)他不斷向上攀登。
2、采用“問(wèn)題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式
展開(kāi)教學(xué)。
3、教學(xué)評(píng)價(jià)方式:
(1)通過(guò)課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動(dòng)中的主動(dòng)參與程度與合作交流意識(shí),及時(shí)給與鼓勵(lì)、強(qiáng)化、指導(dǎo)和矯正。
(2)通過(guò)判斷和舉例,給學(xué)生更多機(jī)會(huì),在自然放松的狀態(tài)下,揭示思維過(guò)程和反饋知識(shí)與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調(diào)查教學(xué)。
(3)通過(guò)課后訪談和作業(yè)分析,及時(shí)查漏補(bǔ)缺,確保達(dá)到預(yù)期的教學(xué)效果。
五、教學(xué)媒體:多媒體
六、教學(xué)和活動(dòng)過(guò)程:
教學(xué)過(guò)程設(shè)計(jì)如下:
?一〉、提出問(wèn)題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過(guò)運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
?二〉、分析問(wèn)題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特點(diǎn)。
(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。
(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
2、[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
?三〉、運(yùn)用公式,解決問(wèn)題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判斷:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、小試牛??
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
?四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過(guò)程中,需要注意那些問(wèn)題?
(1)公式右邊共有3項(xiàng)。
(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
?五〉、冒險(xiǎn)島:
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/52b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
?六〉、學(xué)生自我評(píng)價(jià)
[小結(jié)]通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?
本節(jié)課,我們自己通過(guò)計(jì)算、分析結(jié)果,總結(jié)出了完全平方公式。在知識(shí)探索的過(guò)程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。
?七〉[作業(yè)]p34隨堂練習(xí)p36習(xí)題
七、課后反思
本節(jié)課雖然算不上課本中的難點(diǎn),但在整式一章中是個(gè)重點(diǎn)。它是多項(xiàng)式乘法特殊形式下的一種簡(jiǎn)便運(yùn)算。學(xué)生需要熟練掌握公式兩種形式的使用方法,以提高運(yùn)算速度。授課過(guò)程中,應(yīng)注重讓學(xué)生總結(jié)公式的等號(hào)兩邊的特點(diǎn),讓學(xué)生用語(yǔ)言表達(dá)公式的內(nèi)容,讓學(xué)生說(shuō)明運(yùn)用公式過(guò)程中容易出現(xiàn)的問(wèn)題和特別注意的細(xì)節(jié)。然后再通過(guò)逐層深入的練習(xí),鞏固完全平方公式兩種形式的應(yīng)用。為完全平方公式第二節(jié)課的實(shí)際應(yīng)用和提高應(yīng)用做好充分的準(zhǔn)備
初三數(shù)學(xué)數(shù)與式教案篇5
一、教學(xué)目標(biāo):
1、了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書寫格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
3、結(jié)合實(shí)例體會(huì)反證法的含義。
二、教學(xué)重點(diǎn):
了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,通過(guò)等腰三角形性質(zhì)證明,掌握證明的基本步驟和書寫格式。
教學(xué)難點(diǎn):能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理(特別是證明等腰三角形性質(zhì)時(shí)輔助線做法)。
三、教學(xué)方法:
觀察法。
四、教學(xué)過(guò)程:
復(fù)習(xí):
1、什么是等腰三角形?
2、你會(huì)畫一個(gè)等腰三角形嗎?并把你畫的等腰三角形栽剪下來(lái)。
3、試用折紙的辦法回憶等腰三角形有哪些性質(zhì)?
新課講解:
在《證明(一)》一章中,我們已經(jīng)證明了有關(guān)平行線的一些結(jié)論,運(yùn)用下面的公理和已經(jīng)證明的定理,我們還可以證明有關(guān)三角形的一些結(jié)論。
同學(xué)們和我一起來(lái)回憶上學(xué)期學(xué)過(guò)的公理
本套教材選用如下命題作為公理:
1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;
2.兩條平行線被第三條直線所截,同位角相等;
3.兩邊夾角對(duì)應(yīng)相等的兩個(gè)三角形全等;(sas)
4.兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等;(asa)
5.三邊對(duì)應(yīng)相等的兩個(gè)三角形全等;(sss)
6.全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.
由公理5、3、4、6可容易證明下面的推論:
推論兩角及其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(aas)證明過(guò)程:
已知:∠a=∠d,∠b=∠e,bc=ef
求證:△abc≌△def
證明:∵∠a+∠b+∠c=180°,
∠d+∠e+∠f=180°
(三角形內(nèi)角和等于180°)
∴∠c=180°-(∠a+∠b)
∠f=180°-(∠d+∠e)
又∵∠a=∠d,∠b=∠e(已知)
∴∠c=∠f
又∵bc=ef(已知)
∴△abc≌△def(asa)
定理:等腰三角形的兩個(gè)底角相等。
這一定理可以簡(jiǎn)單敘述為:等邊對(duì)等角。已知:如圖,在abc中,ab=ac。
初三數(shù)學(xué)數(shù)與式教案篇6
教學(xué)內(nèi)容:
義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教版)三年級(jí)上冊(cè)第三者112頁(yè)例1簡(jiǎn)單的組合。
教學(xué)目標(biāo):
1、通過(guò)觀察、猜測(cè)、操作等活動(dòng),找出最簡(jiǎn)單的事物的組合數(shù)。
2、經(jīng)歷探索簡(jiǎn)單事物組合規(guī)律的過(guò)程。
3、培養(yǎng)學(xué)生有順序地全面地思考問(wèn)題的意識(shí)。
4、感受數(shù)學(xué)與生活的緊密聯(lián)系,激發(fā)學(xué)生學(xué)好數(shù)學(xué)的信心。
教學(xué)重點(diǎn):
經(jīng)歷探索簡(jiǎn)單事物組合規(guī)律的過(guò)程。
教學(xué)難點(diǎn):
能用不同的方法準(zhǔn)確地計(jì)算出組合數(shù)。
教具準(zhǔn)備:
教學(xué)課件學(xué)具準(zhǔn)備:每生準(zhǔn)備主題圖中相關(guān)的學(xué)具卡片或?qū)嵨铩?/p>
教學(xué)過(guò)程:
(一)創(chuàng)設(shè)問(wèn)題情境:
師:小朋友,你們喜歡老師漂亮一點(diǎn)呢還是喜歡老師丑一點(diǎn)?
生:大多數(shù)的小朋友說(shuō)喜歡老師漂亮。
師:那你們幫助老師打扮打扮。我最喜歡紅色體恤和這三件下衣,到底怎樣搭配最漂亮呢?請(qǐng)小朋友們給老師出出主意。小朋友們紛紛發(fā)表自己的意見(jiàn),并說(shuō)出了自己的理由。
師:謝謝。你們的建議都不錯(cuò)。那我這一件上衣、三件下衣能有多少種不同的穿法呢?
老師接著問(wèn):那我有兩件上衣、三件下衣又有多少種不同的穿法呢?有說(shuō)4種、有說(shuō)5種、也有說(shuō)6種的,到底有幾種呢?
(二)
1.自主合作探索新知試一試
師:請(qǐng)同學(xué)們也試著想一想,如果你覺(jué)得直接想象有困難的話可以借助手中的學(xué)具卡片擺一擺。學(xué)生活動(dòng)教師巡視。
2.發(fā)現(xiàn)問(wèn)題學(xué)生匯報(bào)所寫個(gè)數(shù),教師根據(jù)巡視的情況重點(diǎn)展示幾份,引導(dǎo)學(xué)生發(fā)現(xiàn)問(wèn)題:有的重復(fù)了,有的漏寫了。
3.小組討論師:每個(gè)同學(xué)算出的個(gè)數(shù)不同,怎樣才能很快算出兩件上衣、三件下衣有多少種不同的穿法呢?并做到不重復(fù)不遺漏呢?學(xué)生以小組為單位交流討論。
4.小組匯報(bào)匯報(bào)時(shí)可能會(huì)出現(xiàn)下面幾種情況:
(1)、無(wú)序的。用學(xué)具卡片或?qū)嵨飻[,然后再數(shù)。
(2)、用連線的方法算出。
(3)、用圖式的方法算出。引導(dǎo)學(xué)生及時(shí)評(píng)價(jià)每一種方法的優(yōu)缺點(diǎn),使其把適合自己的方法掌握起來(lái)。
5.小結(jié)教師簡(jiǎn)單小結(jié)學(xué)生所想方法引出練習(xí)內(nèi)容見(jiàn)課本112頁(yè)。
(三)拓展應(yīng)用
數(shù)字2、3、4、5、6、7寫出不同的兩位數(shù)?寫完交流。(或者也可用這樣一道題:用△○□能擺成6種排法,例如:□○△請(qǐng)你試著擺出其他幾種排法。
教學(xué)反思: