倍數(shù)與因數(shù)教學反思7篇

時間:2022-11-25 作者:betray 教學計劃

作為一名教師首先你要明白什么是教學反思,通過教學反思的寫作,我們能更全面地認識到教學中的不足,以下是范文社小編精心為您推薦的倍數(shù)與因數(shù)教學反思7篇,供大家參考。

倍數(shù)與因數(shù)教學反思7篇

倍數(shù)與因數(shù)教學反思篇1

這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇?,同時,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:

一、尊重教材,引導學生實現(xiàn)從形象向抽象的飛躍。

教材中首先引導學生理解數(shù)與數(shù)之間的關系,進而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學倍數(shù)和因數(shù)的意義。這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。

這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇?,同時,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,

二、細化過程,讓學生在充分交流中感悟理解倍數(shù)和因數(shù)的意義。

倍數(shù)和因數(shù)的意義是本單元的重要知識,其他內(nèi)容的教學都以此為基礎。在學生得出乘法算式后,首先引導學生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學生“看著算式你還能想到什么?”很多學生已經(jīng)領會12也是4的倍數(shù),指名說后,再強化一下讓學生連起來說說誰是誰的倍數(shù)。接著教學“3是12的因數(shù)”,再啟發(fā)“這時你又能想到什么?”學生很容易聯(lián)想到“4也是12的因數(shù)”,而且學生的學習興趣濃厚、求知欲強。這時再讓學生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達的是自然數(shù)之間的關系之后,接著練一練讓學生根據(jù)2×6=12先同桌互相說說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),再讓學生輕聲地說說有點特別的兩句。

整個過程處理細致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學困生,讓學生在遷移中理解倍數(shù)和因數(shù)的意義。

三、由點及面,巧架平臺,讓學生在師生互動中建立完整的數(shù)學模型。

找一個數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準備。探索找一個數(shù)的倍數(shù)或因數(shù)的方法時,重點是幫助學生建立相應的數(shù)學模型。

探索求一個數(shù)因數(shù)的方法是本課的難點,例題直接安排找24的因數(shù)更是困難。教學中我還是利用3×4=12做鋪墊,引導學生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進,先讓學生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學生按除法通過自主探究找出24的所有因數(shù),接著組織學生比較、討論、優(yōu)化提升出找一個數(shù)的因數(shù)的方法。

教學4的倍數(shù)時,學生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數(shù),但是想要“一個不漏且有序的找全,并體會出4的倍數(shù)的個數(shù)是無限的”卻很難。如何引導學生建構(gòu)完整的倍數(shù)的數(shù)學模型呢?我遵循學生的認知規(guī)律,然后引導學生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點逐步在學生的腦海中得以完善、合理建構(gòu)。

這樣搭建了有效的平臺、形成了師生互動生成的過程,學生經(jīng)歷了無序、不完整逐步由點及面向有序、完整的思維邁進,有效的建構(gòu)了數(shù)學模型。

倍數(shù)與因數(shù)教學反思篇2

?數(shù)學課程標準》倡導“自主——合作——探究”的學習方式,強調(diào)學習是一個主動建構(gòu)的過程。所以,應注重培養(yǎng)學生學習的獨立性和自主性,讓學生在教師的指導下主動地參與學習,親歷學習過程,從而學會學習。

1、以“理”為基點,將學生帶入新知的學習。

概念教學重在“理”。學生理解“因數(shù)”、“倍數(shù)”概念有個逐步構(gòu)成的過程,為了促進這一意識建構(gòu),我先讓學生經(jīng)過自我已有的認知結(jié)構(gòu),經(jīng)過“排列整齊的隊形——構(gòu)成乘法算式——抽象出倍數(shù)因數(shù)概念——再由乘法或除法算式——深化理解”,使學生在簡便、簡約并充滿自信中學習新知,在數(shù)與形的結(jié)合中,深刻體驗因數(shù)倍數(shù)的概念。

2、以“序”為站點,培養(yǎng)學生的思維方式。

概念構(gòu)成得在“序”。學生對于概念的構(gòu)成是一個由表及里、由形象到抽象的過程。當學生對概念有了初步認識后,讓學生探索如何找一個數(shù)的倍數(shù)的因數(shù),這既是對概念內(nèi)涵的深化,也是對概念外延的探索。這時思維和排列上的有序性是教學的關鍵,也是本節(jié)課的深度之一。在教學時,分為兩個層次:第一個層次是讓學生在已有的知識基礎上找12的因數(shù),并在交流中,經(jīng)歷了一個從無序到有序、從把握個別到統(tǒng)攬整體、從思維混沌走向思維清晰的過程。抓住教學的難點“如何找全,并且不重復不遺漏”,讓學生自由地說,再引導學生說出想的過程,并加以調(diào)整。表面看來僅僅是組合的變換,實質(zhì)上是思維的提高和方法的優(yōu)化,并讓學生在比較中感受“一對一對”找因數(shù)的方法,經(jīng)歷了互相討論、相互補充、比較優(yōu)化的過程。第二個層次是在學生已經(jīng)有了探索一個數(shù)因數(shù)的方法,具備了必須有序思考的本事之后,啟發(fā)學生“能像找因數(shù)那樣有序的找一個數(shù)的倍數(shù)”,提高了學生的思維本事。

3、以“思”為落腳點,培養(yǎng)學生發(fā)現(xiàn)思考的本事。

概念的生成重在“思”,規(guī)律的構(gòu)成重在“觀察”,教師如果能在此恰到好處的“引導”,必須會讓學生收獲更多,感悟更多。所以設計時,我借助了“找自我學號的因數(shù)和倍數(shù)”這個活動,在很多的有代表性的例子面前,在學生親自的嘗試中,在有目的的比較觀察中,學生的思維被逐步引導到了最深處,明白了一個數(shù)的最大因數(shù)和最小倍數(shù)都是它本身,反過來也是正確的。教師在那里供給了有效的素材,可操作的素材,促使學生對所學的概念進行了有意義的建構(gòu),促進和發(fā)展了他們的思維。

倍數(shù)與因數(shù)教學反思篇3

?倍數(shù)和因數(shù)》,由于之前沒上過這冊資料,在看完教材后就和同組的教師說,這個資料好像挺簡單的??墒巧贤赀@節(jié)課后這個想法卻煙消云散,根本沒有想象的那么容易上,并且在課堂中存在了很多在預設中沒有想到的問題,下頭對自我的課堂做一些反思:

1.在第一個環(huán)節(jié)認識倍數(shù)和因數(shù)的意義中,首先讓學生用12個同樣大小的小正方形擺成一個長方形,并用乘法算式來表示你是怎樣擺的,有幾種不一樣的擺法?經(jīng)過讓學生動手操作實踐,體現(xiàn)了以學生為本,并且能喚醒學生已有的知識經(jīng)驗,抽象為具體討論的數(shù)學問題。在抽象出三個不一樣的乘法算式后,我以第一個乘法算式4×3=12為例,介紹倍數(shù)和因數(shù)的關系,本來以為說:“4和3是12的因數(shù),12是4和3的倍數(shù)”應當是很簡單的兩句話,學生應當會說,可是當請學生來自我選擇一個乘法算式來說一說時,好幾個學生卻被卡住了,還有的說成了4是12的倍數(shù)。

針對學生出現(xiàn)的問題,我覺得可能是自我在介紹時運用的不到位,一個是比較小,后面的同學都沒能看清楚;另一方面我預想的比較簡單,所以說了一遍后也沒請學生再復述一遍。在說到“誰是誰的倍數(shù),誰是誰的因數(shù)”時應當在中相繼出示這兩句話,這樣的話讓學生看著說印象會更深刻,相信學生說的也會比較好。

2.第二個環(huán)節(jié)是探求找一個數(shù)的倍數(shù)的方法,從上一個環(huán)節(jié)我最終出示的除法算式中引入:我們明白了18是3的倍數(shù),那3的倍數(shù)是不是僅有18呢經(jīng)過疑問來激發(fā)學生找出3的倍數(shù)有哪些學生很快能找到,可是并沒有找全,于是再問,那又什么辦法把3的倍數(shù)找全呢學生自然想到去乘1,乘2,乘3……,也就按順序找到了3的倍數(shù)。在分別找到了2和5的倍數(shù)后我問學生:觀察上頭這幾個例子,你有什么發(fā)現(xiàn)?請了好幾個學生都沒能找到,最終還是教師告訴了學生倍數(shù)最小是?最大呢?

針對最終請學生找一找發(fā)現(xiàn)倍數(shù)的共同特點這一問題,我覺得我在設計時問題提得太大,太籠統(tǒng)。學生聽到問題后可能無從下手,不明白該找什么。能夠問:剛才找了2,3,5的倍數(shù),觀察這幾個數(shù)的倍數(shù),他們有什么共同特點?這樣學生就會比較有針對性地去尋找結(jié)果。

3.第三個環(huán)節(jié)是探求找一個數(shù)因數(shù)的方法,找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復又不遺漏地找一個數(shù)的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有是必須困難的,而這個環(huán)節(jié)我處理的也不到位,學生對找一個數(shù)因數(shù)的方法掌握的不夠好。

我一開始設計請學生自主找36的因數(shù),在巡視時發(fā)現(xiàn)有一部分學生沒有頭緒,無從下手,時間倒是花去了不少。所以我覺得是否能夠先從12下手,因為前面一開始已經(jīng)找過12的因數(shù)了,如果那里能用12做一下鋪墊,可能找36的因數(shù)時就會好一些。

在學生自主探索完36的因數(shù)有哪些后,交流不一樣學生的結(jié)果,有一位出現(xiàn)了1,36;2,18;3,12;4,9;6,6我就問你是怎樣找到的?學生說是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數(shù)。其實那里除了用除法來找之外,還能夠用乘的方法來找,而乘的方法似乎對于學生來說在找得時候還更簡單一點。更重要的是我覺得一對對的找對于找全一個數(shù)的因數(shù)是一個很重要的方法,而我卻把這個方法忽略了,所以學生對于找一個數(shù)的因數(shù)的方法不夠深刻,在練習中也發(fā)現(xiàn)做的不夢想。

4.第四個環(huán)節(jié)是鞏固練習,我設計了2個小游戲。一個是看誰反應快,貼合要求的請學生起立,這個游戲?qū)W生參與面廣,學生也感興趣,還從中發(fā)現(xiàn)了找誰的學號是幾的因數(shù),1每次都會起立,就更好的鞏固了一個數(shù)的因數(shù)最小是1??墒且灿袀€別學生反應比較慢。第二個小游戲是猜一猜教師的手機號碼是多少?可是由于前面時間用的比較多,所以沒來得及做。

原本認為簡單的課卻一點都不簡單,每個細小環(huán)節(jié)的把握都要求我去仔細的鉆研教材,設計好每一步,這樣才能上好一節(jié)課。

倍數(shù)與因數(shù)教學反思篇4

本節(jié)課是在學生已經(jīng)學習了一定的整數(shù)知識的基礎上進行教學的。

課堂中,我首先讓學生理解分類標準,明確因數(shù)和倍數(shù)的含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:

第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);

第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。

究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:

一是必須在整數(shù)除法中。

二是必須商是整數(shù)而沒有余數(shù)。

具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

其次,厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。

本節(jié)課的不足之處:

1、練習設計容量少了一些,導致課堂有剩余時間。

2、對因數(shù)和倍數(shù)的含義還應該進行歸納總結(jié)上升到用字母來表示。

倍數(shù)與因數(shù)教學反思篇5

?因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應著一對有整除關系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕捉生活與數(shù)學之間的聯(lián)系,幫助學生理解因數(shù)倍數(shù)相互依存的關系。所以在上課之前我特意和孩子們玩了一個小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。學生對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學,我特別注意下面幾個細節(jié)來幫助學生理解因數(shù)和倍數(shù)的概念。

一是教材雖然不是從過去的整除定義出發(fā),而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但本質(zhì)上任是以“整除”為基礎。所以我上課時特別注意讓學生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。

二是要學生注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學過的“倍”的聯(lián)系與區(qū)別?!氨丁钡母拍畋取氨稊?shù)”要廣??梢哉f“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復強調(diào),幫助孩子們認真理解辨析,所以學生一節(jié)課下來對這組概念就理解透徹了,不會模糊了。

倍數(shù)與因數(shù)教學反思篇6

?公倍數(shù)和公因數(shù)》在新教材中改動很大,新教材將數(shù)的整除中有關分解質(zhì)因數(shù)、互質(zhì)數(shù)、用短除法求幾個數(shù)的最大公因數(shù)和最小公倍數(shù)的教學內(nèi)容精簡掉了,新教材突出了讓學生在現(xiàn)實情境中探究認識公倍數(shù)和最小公倍數(shù),公因數(shù)和最大公因數(shù),突出了運用數(shù)學概念,讓學生探索找兩個數(shù)的最小公倍數(shù)、最大公因數(shù)的方法,注重讓學生在解決問題的過程中,主動探索簡潔的方法,進行有條理的思考,加強了數(shù)學與現(xiàn)實生活的聯(lián)系。教學以后與以前的教材相比,主要的體會有以下幾點。

一是在現(xiàn)實的情境中教學概念,讓學生通過操作領會公倍數(shù)、公因數(shù)的含義。例1教學公倍數(shù)和最小公倍數(shù),例3教學公因數(shù)和最大公因數(shù),都是形成新的數(shù)學概念,都讓學生在操作活動中領會概念的含義。學生通過操作活動,感受公倍數(shù)和公因數(shù)的實際背景,縮短了抽象概念與學生已有知識經(jīng)驗之間的距離,有利于學生運用公倍數(shù)、最小公倍數(shù)、公因數(shù)和最大公因數(shù)的.知識解決實際問題。

二是有利于改善學習方式,便于學生通過操作和交流經(jīng)歷學習過程。在教學中,讓學生按要求自主操作,發(fā)現(xiàn)用怎樣的長方形可以正好鋪滿一個正方形;用邊長幾厘米的正方形可以正好鋪滿一個長方形。在對所發(fā)現(xiàn)的不同的結(jié)果的過程中,引導學生聯(lián)系除法算式進行思考,對直觀操作活動進行初步的抽象。再把初步發(fā)現(xiàn)的結(jié)論進行類推,在此基礎上,引導學生思考正方形的邊長與長方形的長和寬有什么關系,再揭示公倍數(shù)和公因數(shù),最小公倍數(shù)與最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎上,借助直觀的集合等圖式,顯示公倍數(shù)與公因數(shù)的意義。讓學生經(jīng)歷了概念的形成過程。

三是刪掉了一些與學生實際聯(lián)系不夠緊密、對后繼學習沒有影響的內(nèi)容后,確實減輕了學生的負擔,但是找兩個數(shù)的最小公倍數(shù)和最大公因數(shù)時由于采用了列舉法,學生得花較多的時間去找,當碰到的兩個數(shù)都比較大時,不僅花時多,而且還容易出現(xiàn)遺漏或算錯的情況。相比之下,用短除法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)就不會出現(xiàn)這方面的問題,所以我在實際教學中,先根據(jù)概念采用一一列舉的方法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),待學生熟悉之后就教學生運用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),這樣的安排效果不錯,學生也沒感到增加了負擔。

倍數(shù)與因數(shù)教學反思篇7

?因數(shù)和倍數(shù)》是人教版五年級下冊第二章第一課時所學內(nèi)容,這一內(nèi)容與原來教材比有了很大的不同,舊教材中是先建立整除的概念,再在此基礎上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識因數(shù)和倍數(shù)的,這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。上完這節(jié)課覺得有以下幾點做得較好:

1、通過操作實踐,認識因數(shù)和倍數(shù)

我開門見山,直接入題,創(chuàng)設了有效的數(shù)學學習情境,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義,這樣在學生已有的知識基礎上,從動手操作,直觀感知,讓學生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義,使學生初步建立了“因數(shù)與倍數(shù)”的概念,減緩難度,效果較好。

2、通過自主化、活動化、合作化,找因數(shù)和倍數(shù)

整個教學過程中力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、引導者、參與者,。整節(jié)課中,我始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索,學習理解因數(shù)和倍數(shù)的意義,探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。教學中的多次合作不僅能讓學生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學生的合作學習能力,初步形成合作與競爭的意識。

3、通過變式拓展,培養(yǎng)學生能力

課前我精心設計練習題,力求不僅圍繞教學重點,而且注意到練習的層次性,趣味性。譬如:讓學生用所學知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學生判斷自己的學號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學生的學號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學生思考問題的空間很大,這樣既培養(yǎng)了學生的發(fā)散思維能力,又使學生享受到了數(shù)學思維的快樂,感悟數(shù)學的魅力。

但是還存在一些不可忽視的問題:

1、課上應該及時運用多媒體將學生找的因數(shù)呈現(xiàn)出來,引導學生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。

2、課堂用語還不夠精煉,應該進一步規(guī)范課堂用語,做到不拖泥帶水。

3、教者評價應及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來,避免單一化。