最大公因數(shù)的教學(xué)反思8篇

時(shí)間:2023-01-29 作者:pUssy 教學(xué)計(jì)劃

通過寫教學(xué)反思,我們一定能從中發(fā)現(xiàn)教學(xué)中的不足和收獲,要在寫教學(xué)反思的時(shí)候仔細(xì)思考,這樣的反思才有價(jià)值,下面是范文社小編為您分享的最大公因數(shù)的教學(xué)反思8篇,感謝您的參閱。

最大公因數(shù)的教學(xué)反思8篇

最大公因數(shù)的教學(xué)反思篇1

本節(jié)課,我從學(xué)生已有的知識(shí)和經(jīng)驗(yàn)出發(fā),精心設(shè)計(jì)一個(gè)童話情境,激發(fā)了學(xué)生的學(xué)習(xí)欲望。先讓學(xué)生動(dòng)手操作、自學(xué)討論,幫助王叔叔選擇地板磚。再思考探索正方形地板磚的邊長與長方形地面的長、寬之間的關(guān)系。然后用問題的形式,通過復(fù)習(xí)16和12的因數(shù),讓學(xué)生再找兩個(gè)數(shù)的因數(shù)、找兩個(gè)數(shù)的公有的因數(shù)、找兩個(gè)數(shù)公有的因數(shù)中最大的因數(shù)的過程中,發(fā)現(xiàn)用邊長1厘米、2厘米、4厘米的正方形都正好鋪滿長16厘米,寬12厘米的長方形。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考1、2、4這些數(shù)和16、12有什么關(guān)系,同時(shí)揭示公因數(shù)和最大公因數(shù)的概念。

總之,我在教學(xué)的過程中,不但復(fù)習(xí)鞏固舊知,讓學(xué)生在不知不覺中學(xué)會(huì)了新知。而且還讓學(xué)生帶著自己的數(shù)學(xué)現(xiàn)實(shí)參與數(shù)學(xué)課堂,不斷地利用原有的經(jīng)驗(yàn)背景對(duì)新的問題做出解釋。此過程中我還注意了鼓勵(lì)每一個(gè)學(xué)生參與探索,重視引發(fā)學(xué)生思考,注重學(xué)生間的交流,讓學(xué)生用自己的語言表述自己的發(fā)現(xiàn),對(duì)于有困難的學(xué)生,我從方法上作進(jìn)一步指導(dǎo),小組長幫助,生生互幫等。以“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者為主。培養(yǎng)了學(xué)生動(dòng)手操作的能力,使他們?cè)谟淇斓膶W(xué)習(xí)氛圍中學(xué)會(huì)了本節(jié)課的內(nèi)容。

最大公因數(shù)的教學(xué)反思篇2

1、創(chuàng)設(shè)情境引入新知。

我在教學(xué)時(shí),改變教材中從單調(diào)的計(jì)算引出概念的做法,而是創(chuàng)設(shè)情景,通過生動(dòng)有趣的畫面,吸引學(xué)生積極思維,其特有的感染力和表現(xiàn)力,能直觀生動(dòng)地對(duì)學(xué)生心理起到催化作用,有效地激發(fā)了學(xué)生探究新知識(shí)的興趣,使教與學(xué)始終處于活化狀態(tài)。

2、合理利用教材。

“循環(huán)小數(shù)”是學(xué)生較難準(zhǔn)確地掌握和表述的一個(gè)概念,特別是表述其意義的“從某一位起”、“依次”、“不斷”、“重復(fù)出現(xiàn)”等抽象說法,學(xué)生難以理解。這節(jié)課的內(nèi)容也較多,我打破教材編排順序,將教學(xué)內(nèi)容重新整合,靈活處理教材,先以王鵬喜歡跑步引入計(jì)算400÷75讓學(xué)生計(jì)算發(fā)現(xiàn)商中重復(fù)出現(xiàn)一個(gè)相同的數(shù)字,再以王鵬喜歡游泳引出計(jì)算25÷22讓學(xué)生計(jì)算發(fā)現(xiàn)商中有兩個(gè)不斷重復(fù)出現(xiàn)的數(shù)字。從而引導(dǎo)學(xué)生發(fā)現(xiàn)發(fā)現(xiàn)商的特點(diǎn),引出“循環(huán)小數(shù)”。這樣可以將難點(diǎn)分散,各個(gè)擊破。

3、引導(dǎo)學(xué)生探索,讓學(xué)生成為真正的參與者。

?數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們?cè)谧灾魈剿骱秃献鹘涣鞯倪^程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。”數(shù)學(xué)學(xué)習(xí)不應(yīng)是簡單個(gè)體接受知識(shí)的過程,而是一個(gè)主體對(duì)自己感興趣的且是現(xiàn)實(shí)的生活性主題的探究與發(fā)展的過程。在新課中,我首先從生活中的現(xiàn)象入手,再引導(dǎo)學(xué)生主動(dòng)探究數(shù)學(xué)中的問題,通過讓學(xué)生選擇自己感興趣的信息試算、觀察、分析、比較、討論等學(xué)習(xí)方式充分調(diào)動(dòng)學(xué)生多種感官的參與,給學(xué)生提供自主合作探究的空間,讓學(xué)生全面參與新知的發(fā)生、發(fā)展和形成過程,使學(xué)生真正體驗(yàn)到探究的樂趣和做數(shù)學(xué)的價(jià)值。

當(dāng)然,在這節(jié)課中也有很多不足之處。如我在教學(xué)中過多地注意預(yù)設(shè),使教學(xué)放不開手腳,環(huán)節(jié)安排趨于飽和,這樣壓縮了學(xué)生思維空間,在今后的教學(xué)中,特別是環(huán)節(jié)預(yù)設(shè)應(yīng)在于精、在于厚實(shí)。

最大公因數(shù)的教學(xué)反思篇3

一、分析基礎(chǔ)知識(shí),準(zhǔn)確制定教學(xué)目標(biāo)。

本節(jié)課是在學(xué)生已經(jīng)理解和掌握因數(shù)、倍數(shù)的含義,初步學(xué)會(huì)找一個(gè)數(shù)的倍數(shù)和因數(shù),知道一個(gè)數(shù)的倍數(shù)和因數(shù)的特點(diǎn)的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識(shí)的重要組成部分,又是進(jìn)一步學(xué)習(xí)約分和分?jǐn)?shù)四則計(jì)算的基礎(chǔ)。我根據(jù)教材的編寫特點(diǎn)準(zhǔn)確地制定了教學(xué)目標(biāo),即理解公因數(shù)及最大公因數(shù)的意義。知道任意兩個(gè)數(shù)都有公因數(shù);能夠采用枚舉法找到兩個(gè)數(shù)的最大公因數(shù)。通過動(dòng)手、觀察、思考等教學(xué)活動(dòng),從拼擺過程中發(fā)現(xiàn)公因數(shù),再通過進(jìn)一步探究明確公因數(shù)及最大公因數(shù)的含義。

二、在現(xiàn)實(shí)的情境中教學(xué)概念,借助直觀操作活動(dòng),經(jīng)歷概念的形成過程。

以往教學(xué)公因數(shù)的概念,通常是直接找出兩個(gè)自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的因數(shù)是兩個(gè)數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。而本節(jié)課注意引導(dǎo)學(xué)生通過找出已知面積的長方形的長和寬的長度,確定怎樣使這樣的兩個(gè)長方形拼成一個(gè)新的長方形。其次,引導(dǎo)學(xué)生觀察這樣的幾組數(shù)據(jù)與長方形面積之間的關(guān)系——右面的這些數(shù)據(jù)都是左面這些數(shù)據(jù)的因數(shù)。三是揭示出公因數(shù)和最大公因數(shù)的含義——指出用紅筆標(biāo)出的這些數(shù)據(jù)是左面這兩個(gè)數(shù)的公因數(shù),找到這里面最大的一個(gè)公因數(shù),完成由形象到抽象的過程,把感性認(rèn)識(shí)提升為理性認(rèn)識(shí)。

三、把握內(nèi)涵外延,準(zhǔn)確理解概念的含義。

概念的內(nèi)涵是指這個(gè)概念的所反映的一切對(duì)象的共同的本質(zhì)屬性。公因數(shù)是幾個(gè)數(shù)公有的因數(shù),可見“幾個(gè)數(shù)公有的”是公因數(shù)的本質(zhì)屬性。因此在因數(shù)的基礎(chǔ)上學(xué)習(xí)公因數(shù),關(guān)鍵在于突出“公有”的含義。本節(jié)課突出概念的內(nèi)涵是“既是……也是……”即“公有”。教學(xué)中,我首先讓學(xué)生在練習(xí)本上找出12和16的因數(shù),然后借助直觀的集合圖揭示出“既是12的因數(shù),又是16的因數(shù)”這句話的含義,幫助學(xué)生進(jìn)一步理解公因數(shù)和最大公因數(shù)的意義。這樣安排有兩點(diǎn)好處:一是學(xué)生通過操作活動(dòng),能體會(huì)公因數(shù)的實(shí)際背景,加深對(duì)抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。

概念的外延是指這個(gè)概念包含的一切對(duì)象。對(duì)具體事例是否屬于概念作出判斷,就是識(shí)別概念的外延,這對(duì)加深概念的認(rèn)識(shí)很有好處。本節(jié)課我注意利用反例,來凸現(xiàn)公因數(shù)的含義。在用集合圖法來表示12和16的公因數(shù)的時(shí)候,找到填寫錯(cuò)誤的學(xué)生的例子,提示學(xué)生注意:并集里填寫的是兩個(gè)數(shù)的公因數(shù),而沒有交在一起的集合圖中,只填寫這兩個(gè)數(shù)的都有的因數(shù),從而進(jìn)一步明確公因數(shù)的概念。

四、教學(xué)中的不足:

教師的提問有時(shí)指向性不是很強(qiáng),學(xué)生不能很快地明白老師的意圖,影響了學(xué)生的思考,須進(jìn)一步提高。在教學(xué)“兩個(gè)長和寬都是整厘米數(shù)的長方形的面積分別是2平方厘米和3平方厘米,這兩個(gè)長方形的長、寬分別是多少?”時(shí),學(xué)生有些困難,我應(yīng)該讓學(xué)生動(dòng)手在本上畫一畫,幫助學(xué)生找到,降低難度,這點(diǎn)考慮不周,沒有切實(shí)聯(lián)系實(shí)際。

自己要學(xué)的東西還有很多,應(yīng)注意提高自身修養(yǎng)。多閱讀、多聽課,努力提高自己的教學(xué)水平,更好地為學(xué)生服務(wù)。

最大公因數(shù)的教學(xué)反思篇4

?標(biāo)準(zhǔn)》指出“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者。”這一理念要求我們教師的角色必須轉(zhuǎn)變。我想教師的作用必須體現(xiàn)在以下幾個(gè)方面。一是要引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識(shí)體驗(yàn)之間的關(guān)聯(lián);二是要提供把學(xué)生置于問題情景之中的機(jī)會(huì);三是要營造一個(gè)激勵(lì)探索和理解的氣氛,為學(xué)生提供有啟發(fā)性的討論模式;四是要鼓勵(lì)學(xué)生表達(dá),并且在加深理解的基礎(chǔ)上,對(duì)不同的答案開展討論;五是要引導(dǎo)學(xué)生分享彼此的思想和結(jié)果,并重新審視自己的想法。

對(duì)照《課標(biāo)》的理念,我對(duì)《公因數(shù)與最大公因數(shù)》的教學(xué)作了一點(diǎn)嘗試。

一、引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識(shí)體驗(yàn)之間的關(guān)聯(lián)。

?公因數(shù)與最大公因數(shù)》是在《公倍數(shù)和最小公倍數(shù)》之后學(xué)習(xí)的一個(gè)內(nèi)容。如果我們對(duì)本課內(nèi)容作一分析的話,會(huì)發(fā)現(xiàn)這兩部分內(nèi)容無論是在教材的呈現(xiàn)程序還是在思考方法上都有其相似之處?;谶@一認(rèn)識(shí),在課的開始我作了如下的設(shè)計(jì):

“今天我們學(xué)習(xí)公因數(shù)與最大公因數(shù)。對(duì)于今天學(xué)習(xí)的內(nèi)容你有什么猜測?”

學(xué)生已經(jīng)學(xué)過公倍數(shù)與最小公倍數(shù),這兩部分內(nèi)容有其相似之處,課始放手讓學(xué)生自由猜測,學(xué)生通過對(duì)已有認(rèn)知的檢索,必定會(huì)催生出自己的一些想法,從課的實(shí)施情況來看,也取得了令人滿意的效果。什么是公因數(shù)和最大公因數(shù)?如何找公因數(shù)與最大公因數(shù)?為什么是最大公因數(shù)面不是最小公因數(shù)?這一些問題在學(xué)生的思考與思維的碰撞中得到了較好的生成。無疑這樣的設(shè)計(jì)貼近學(xué)生的最近發(fā)展區(qū),為課堂的有效性奠定了基礎(chǔ)。

二、提供把學(xué)生置于問題情景之中的機(jī)會(huì),營造一個(gè)激勵(lì)探索和理解的氣氛

“對(duì)于今天學(xué)習(xí)的內(nèi)容你有什么猜測?”這一問題的包容性較大,不同的學(xué)生面對(duì)這一問題都能說出自己不同的猜測,學(xué)生的差異與個(gè)性得到了較好的尊重,真正體現(xiàn)了面向全體的思想。不同學(xué)生在思考這一問題時(shí)都有了自己的見解,在相互補(bǔ)充與想互啟發(fā)中生成了本課教學(xué)的內(nèi)容,使學(xué)生充分體會(huì)了合作的魅力,構(gòu)建了一個(gè)和諧的課堂生活。在這一過程中學(xué)生深深地體會(huì)到數(shù)學(xué)知識(shí)并不是那么高深莫測、可敬而不可親。數(shù)學(xué)并不可怕,它其實(shí)滋生于原有的知識(shí),植根于生活經(jīng)驗(yàn)之中。這樣的教學(xué)無疑有利于培養(yǎng)學(xué)生的自信心,而自信心的培養(yǎng)不就是教育最有意義而又最根本的內(nèi)容嗎?

三、讓學(xué)生進(jìn)行獨(dú)立思考和自主探索

通過學(xué)生的猜測,我把學(xué)生的提出的問題進(jìn)行了整理:

(1) 什么是公因數(shù)與最大公因數(shù)?

(2) 怎樣找公因數(shù)與最大公因數(shù)?

(3) 為什么是最大公因數(shù)而不是最小公因數(shù)?

(4) 這一部分知識(shí)到底有什么作用?

我先讓學(xué)生獨(dú)立思考?然后組織交流,最后讓學(xué)生自學(xué)課本

這樣的設(shè)計(jì)對(duì)學(xué)生來說具有一定的挑戰(zhàn)性,在問題解決的過程中充分發(fā)揮了學(xué)生的主體性。在這一過程中學(xué)生形成了自己的理解,在與他人合作與交流中逐漸完善了自己的想法。我想這大概就是《標(biāo)準(zhǔn)》中倡導(dǎo)給學(xué)生提供探索與交流的時(shí)間和空間的應(yīng)有之意吧。

最大公因數(shù)的教學(xué)反思篇5

?公因數(shù)和最大公因數(shù)》這部分內(nèi)容是在學(xué)生理解因數(shù)與倍數(shù)的相互關(guān)系,會(huì)找1~100的自然數(shù)的因數(shù),并且在學(xué)習(xí)面積概念時(shí)積累了“密鋪”的活動(dòng)經(jīng)驗(yàn)開展教學(xué)的。對(duì)于《公因數(shù)和最大公因數(shù)》這樣一節(jié)概念課的教學(xué),其教學(xué)重、難點(diǎn)我認(rèn)為就是對(duì)“公”字意義的理解,也就是如何體驗(yàn)這個(gè)數(shù)既是一個(gè)數(shù)的因數(shù),又是另一個(gè)數(shù)的因數(shù),才是兩個(gè)數(shù)“公有”的因數(shù)。為了突出本節(jié)課的教學(xué)重點(diǎn)、突破教學(xué)難點(diǎn),結(jié)合我們本學(xué)期的教研主題“如何設(shè)計(jì)有效的教學(xué)活動(dòng),達(dá)成教學(xué)目標(biāo)”,我主要從以下幾方面入手來嘗試教學(xué):

一、重視活動(dòng)體驗(yàn),讓學(xué)生經(jīng)歷數(shù)學(xué)概念的形成過程。

第一次猜想:一個(gè)長方形,長4厘米,寬2厘米。如果用同樣大的邊長是整厘米數(shù)的正方形來擺,剛好擺滿沒有剩余,可以選邊長是幾厘米的正方形?讓學(xué)生帶著自己的思考去操作驗(yàn)證,在操作中體會(huì)“同樣大小的正方形”、“擺滿沒有剩余”,初步感知正方形既要把長方形的長擺滿沒有剩余,又要把長方形的寬擺滿沒有剩余。

第二次猜想:現(xiàn)在把長方形變大,長6厘米,寬4厘米,同樣的要求,這次正方形的邊長可以是幾厘米?學(xué)生可以熟練地操作驗(yàn)證,在活動(dòng)體驗(yàn)和交流中進(jìn)一步感知選擇正方形時(shí)既要保證長方形的長擺滿沒有剩余,又要保證長方形的寬擺滿沒有剩余。

第三次猜想:繼續(xù)變大,長18厘米,寬12厘米長方形,還是同樣的要求,用同樣大的小正方形來擺,剛好擺滿沒有剩余,這次可以選邊長是幾厘米的正方形呢?學(xué)生繼續(xù)操作驗(yàn)證。這時(shí)學(xué)生已經(jīng)有了前兩次的操作感知,積累了充分的活動(dòng)經(jīng)驗(yàn),這些活動(dòng)經(jīng)驗(yàn)可以支撐他們?nèi)ネ评?、想象,找到能“擺滿沒有剩余”的本質(zhì),從而從整體感知正方形邊長的規(guī)律。

然后,發(fā)揮教師的主導(dǎo)作用:“我們前后共擺了三個(gè)長方形,得到了黑板上的這些數(shù)據(jù)。仔細(xì)想一想,這些正方形的邊長和什么有關(guān)?有怎樣的關(guān)系呢?”引導(dǎo)學(xué)生觀察數(shù)據(jù),發(fā)現(xiàn)規(guī)律,引出公因數(shù)和最大公因數(shù)的概念。

通過創(chuàng)設(shè)以上教學(xué)活動(dòng),讓學(xué)生在活動(dòng)中實(shí)實(shí)在在地經(jīng)歷了公因數(shù)產(chǎn)生的過程,積累豐富的活動(dòng)經(jīng)驗(yàn),充分體驗(yàn)公因數(shù)的意義。

二、借助幾何直觀,增進(jìn)學(xué)生對(duì)概念意義的理解。

通過上面的操作體驗(yàn)和思考認(rèn)知,學(xué)生認(rèn)識(shí)了公因數(shù)和最大公因數(shù),又經(jīng)歷了找公因數(shù)和最大公因數(shù)的過程,學(xué)生能感知“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”這三個(gè)概念之間存在著一些聯(lián)系。為了幫助學(xué)生深入地理解概念,提出問題:“對(duì)比這三個(gè)概念,現(xiàn)在你能說說它們之間的聯(lián)系與區(qū)別嗎?可以選其中兩個(gè)說一說?!币龑?dǎo)學(xué)生進(jìn)一步地思考。這時(shí)學(xué)生交流:“‘因數(shù)’是一個(gè)數(shù)的,而‘公因數(shù)’是兩個(gè)或兩個(gè)以上的數(shù)公有的”、“‘最大公因數(shù)’首先它也是‘公因數(shù)’中的一個(gè),而且是‘公因數(shù)’中最大的一個(gè)?!备鶕?jù)學(xué)生的交流,我通過課件,借助韋恩圖形象直觀地演示了“因數(shù)”與“公因數(shù)”、“公因數(shù)”與“最大公因數(shù)”之間的關(guān)系,增進(jìn)了學(xué)生對(duì)概念意義的理解。

三、通過實(shí)際問題,溝通數(shù)學(xué)概念與現(xiàn)實(shí)世界的聯(lián)系。

在學(xué)生充分理解區(qū)分了“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”三個(gè)概念之后,提出問題:“一根彩帶長16分米,如果要截成小段來裝飾包裝盒,要求每段一樣長且剪完沒有剩余,每段可以是幾分米?(選整分米數(shù))”學(xué)生想到:這是個(gè)用因數(shù)的知識(shí)解決的問題,求每段可以是幾分米,也就是求16的因數(shù)。這時(shí),引導(dǎo)學(xué)生改編成一個(gè)用公因數(shù)來解決的問題,學(xué)生首先想到了

少需要兩個(gè)數(shù)據(jù),于是有的學(xué)生想到可以改編成:“兩條彩帶,一條16分米,一條12分米。把它們截成同樣長的小段且沒有剩余,每段可以是幾分米?(選整分米數(shù))”這樣的問題。在學(xué)生思考的過程,既是在進(jìn)一步理解概念的意義,又找到了“公因數(shù)”、“最大公因數(shù)”概念的現(xiàn)實(shí)意義,培養(yǎng)了學(xué)生的數(shù)學(xué)抽象能力。

一節(jié)課下來,我發(fā)現(xiàn)學(xué)生是最棒的!在不斷地實(shí)踐探索中,他們的認(rèn)識(shí)不斷提升,我仿佛聽得到他們思維拔節(jié)的聲音。

當(dāng)然,仔細(xì)琢磨,這節(jié)課還有很多可圈可點(diǎn)之處,如:

1、在三次操作之后,找正方形邊長與長方形的長和寬有什么關(guān)系環(huán)節(jié),有的孩子不能用數(shù)學(xué)的眼光去觀察、去思考,還停留在操作上,這就說明作為老師,在這兩個(gè)環(huán)節(jié)之間沒有為孩子搭建起合適的橋梁,沒有幫孩子找到一個(gè)好的思維支點(diǎn)。

2、因?yàn)椴僮鞲兄獣r(shí)間較長,在本節(jié)課的第二個(gè)知識(shí)目標(biāo)——找公因數(shù)和最大公因數(shù)的方法環(huán)節(jié)就沒有充分的時(shí)間將孩子的各種方法展開交流,也是個(gè)小小的遺憾。

帶著原有的思考我們做了如上嘗試,然而一節(jié)課的時(shí)間是有限的,個(gè)人業(yè)務(wù)素養(yǎng)也有待提高,所以沒有做到面面俱到。好在一節(jié)課的結(jié)束并不意味著思考的終止,我又帶著實(shí)踐中的新問題上路了。期待著思考的路上,能得到更多領(lǐng)導(dǎo)、同行們的指點(diǎn)與批評(píng)!

最大公因數(shù)的教學(xué)反思篇6

日本著名數(shù)學(xué)教育家米山國藏指出:“作為知識(shí)的數(shù)學(xué)出校門不到兩年可能就忘了,唯有深深銘記在頭腦中的是數(shù)學(xué)的精神,數(shù)學(xué)的思想、研究的方法和著眼點(diǎn)等,這些隨時(shí)隨地發(fā)生作用,使他們終身受益。”從這個(gè)教學(xué)的設(shè)計(jì)中我們可以看到,教學(xué)中不只是讓學(xué)生接受一個(gè)概念知識(shí)或一種求最大公約數(shù)的方法;不只是注重?cái)?shù)學(xué)形式層面的教學(xué),而是更重視數(shù)學(xué)發(fā)現(xiàn)層面的教學(xué),即讓學(xué)生在經(jīng)歷“數(shù)學(xué)家”解決問題的過程中去理解、去感受一種數(shù)學(xué)的思想和觀念──數(shù)學(xué)化思想。學(xué)生先是感知地板磚中隱含的數(shù)學(xué),會(huì)用約數(shù)、倍數(shù)知識(shí)解釋簡單的生活現(xiàn)象,進(jìn)而思考并嘗試解決畫廊內(nèi)裝飾畫的設(shè)計(jì),學(xué)生自然會(huì)聯(lián)想到地板磚中數(shù)學(xué)知識(shí)。但是,從解釋到應(yīng)用設(shè)計(jì),在沒有學(xué)習(xí)公約數(shù)的情況下會(huì)存在較大的難度。于是,創(chuàng)設(shè)了做數(shù)學(xué)的空間。讓他們?cè)谠O(shè)計(jì)正方形的過程中,逐漸感知公約數(shù)的存在,建立了解決這種問題的數(shù)學(xué)模型。再反思與總結(jié),引導(dǎo)學(xué)生自己創(chuàng)造了“公約數(shù)”與“最大公約數(shù)”的概念。

數(shù)學(xué)化思想觀念是指用數(shù)學(xué)眼光去認(rèn)識(shí)和處理周圍事物或數(shù)學(xué)問題,可以培養(yǎng)學(xué)生良好的“用數(shù)學(xué)”意識(shí),使數(shù)學(xué)關(guān)系成為學(xué)生的一種思維模式。而我們的課堂中,大多還是圍繞知識(shí)就事論事,沒有從形成學(xué)生思維模式的角度去展開知識(shí)形成和問題解決的思維過程,去注重現(xiàn)代的數(shù)學(xué)思想,去隱含重要的數(shù)學(xué)方法,這樣,學(xué)生學(xué)到的只是知識(shí)的堆砌,沒有自主的發(fā)展和對(duì)數(shù)學(xué)本質(zhì)的領(lǐng)悟。

最大公因數(shù)的教學(xué)反思篇7

教材共提供了三種不同的方式求兩個(gè)數(shù)的最大公因數(shù),方法一:分別寫出兩個(gè)數(shù)的因數(shù),再找最大公因數(shù);方法二:先找出一個(gè)數(shù)的所有因數(shù),再看哪些因數(shù)是另一個(gè)數(shù)的因數(shù),最后從中找出最大的;方法三:用分解質(zhì)因數(shù)的方法找兩個(gè)數(shù)的最大公因數(shù)。我還給學(xué)生補(bǔ)充了用短除法求最大公因數(shù)。這么多方法,教師應(yīng)該向?qū)W生重點(diǎn)推薦哪種呢?教材中補(bǔ)充拓展的分解質(zhì)因數(shù)方法學(xué)生是否都應(yīng)掌握呢?短除法是否都應(yīng)掌握呢?方法一與方法二相比,由于第一種方法便于觀察比較,十分直觀。因此,在課堂教學(xué)中許多學(xué)生暗暗地就選擇了它。方法二與方法三相比,在數(shù)據(jù)偏大且因數(shù)較多時(shí),如果用分解質(zhì)因數(shù)的方法來求最大公因數(shù)不僅正確率高,而且速度也會(huì)大幅提高。但是用分解質(zhì)因數(shù)的方法來求最大公因數(shù)對(duì)一些學(xué)生來說又有相當(dāng)?shù)碾y度,至于為什么要把兩個(gè)數(shù)全部公有的質(zhì)因數(shù)相乘,一些學(xué)生還不太明白。

在教學(xué)中,我認(rèn)為教師不能僅僅只是介紹,還有必要讓學(xué)生們掌握這種方法技能。用短除法求最大公因數(shù)我感覺比較簡單,學(xué)生好接受,好理解。但是短除法求最大公因數(shù)一直要除到所得的商是互質(zhì)數(shù)時(shí)為止。如果用此法,學(xué)生必須首先認(rèn)識(shí)“互質(zhì)數(shù)”,并能正確判斷。雖然有關(guān)“互質(zhì)數(shù)”的內(nèi)容教材83頁“你知道嗎”中有所涉及,相應(yīng)知識(shí)的考查在練習(xí)十五第6題中也有所體現(xiàn)。至于學(xué)生選用哪種策略找兩個(gè)數(shù)的最大公因數(shù),我并不強(qiáng)求。從作業(yè)反饋情況來看,多數(shù)學(xué)生更喜歡方法一,但是我們要提醒學(xué)生養(yǎng)成先觀察數(shù)據(jù)特點(diǎn),然后再動(dòng)筆的習(xí)慣。如兩個(gè)數(shù)正好成倍數(shù)關(guān)系或互質(zhì)數(shù)關(guān)系時(shí),許多學(xué)生仍舊按部就班地采用一般策略來解決,全班只有少數(shù)的學(xué)生能夠根據(jù)“當(dāng)兩個(gè)數(shù)成倍數(shù)關(guān)系時(shí),較小數(shù)就是它們的最大公因數(shù)”的規(guī)律快速找到最大公因數(shù)。在這一方面,教師在教學(xué)中要率先垂范,做好榜樣。在鞏固練習(xí)過程中,也應(yīng)加強(qiáng)訓(xùn)練,每次動(dòng)筆練習(xí)之前補(bǔ)充一個(gè)環(huán)節(jié)——觀察與思考。使學(xué)生除了掌握基本策略方法外,還能靈活快捷地求出一些特例來。

這節(jié)課本來想把教材練習(xí)十五的習(xí)題講解完,但是時(shí)間不夠用了,只好下節(jié)課再講。

最大公因數(shù)的教學(xué)反思篇8

【多問幾個(gè)為什么】

1、出差兩天,今日回來,與孩子們繼續(xù)暢游《公倍數(shù)和公因數(shù)》單元。

思維一旦被激發(fā),就有點(diǎn)一發(fā)不可收拾。

從第一課時(shí)開始,孩子們與我是完全浸潤在了公倍數(shù)與公因數(shù)的歡樂中。我的態(tài)度也從一開始對(duì)教材安排的質(zhì)疑,到現(xiàn)在極力擁護(hù)教材的安排。

只有放手給孩子們一個(gè)構(gòu)建的機(jī)會(huì),孩子們才能在構(gòu)建過程中頻頻發(fā)起智慧的邀請(qǐng)。

在學(xué)習(xí)公倍數(shù)的時(shí)候,課上巧遇“思維定勢”,孩子們以為兩個(gè)數(shù)的公倍數(shù)就是它們的乘積;但是在解決書本上的6和9的公倍數(shù)是多少時(shí),猛然發(fā)現(xiàn),這個(gè)方法不能次次實(shí)施。孩子們提出了一系列猜想。其中小彧發(fā)現(xiàn),如果將錯(cuò)就錯(cuò),把6和9相乘,也可以,但是要除以它們的最大公因數(shù)。并且,小彧通過舉例,把這個(gè)發(fā)現(xiàn)從特殊上升到了一般。

因?yàn)楫?dāng)時(shí)還未學(xué)習(xí)公因數(shù),我就躲避了問題的內(nèi)里。

小何在備學(xué)中說,我最大的問題是,我知道小彧的說法是對(duì)的,但是為何6和9兩個(gè)數(shù)相乘,再除以最大公因數(shù),得到的就是最小公倍數(shù),其中的道理是什么?

呵呵,好家伙,知道了是什么,自覺追問了為什么?

明天我們要對(duì)本章節(jié)的內(nèi)容做個(gè)整體梳理,我準(zhǔn)備結(jié)合短除法,讓孩子們意識(shí)到小何追問思想的可貴,以及這個(gè)方法可行之處究竟是什么。

2、孩子們很愛思考,從第一課時(shí)的下課時(shí)間開始,就發(fā)現(xiàn)兩個(gè)數(shù)若有倍數(shù)關(guān)系,它們的最小公倍數(shù)很奇妙,就是較大的數(shù)。

第二課時(shí),我們通過教材上的習(xí)題,一起說了這個(gè)規(guī)律,即訴說了看到的表面現(xiàn)象。

孩子們還不甘心,提出了問題,為什么兩個(gè)數(shù)是倍數(shù)關(guān)系,最小公倍數(shù)就是大的那個(gè)數(shù)呢?

一時(shí)安靜后,好幾個(gè)孩子舉高手,并說清了原因:大數(shù)本身是小數(shù)的倍數(shù),大數(shù)又是自己最小的倍數(shù),理所應(yīng)當(dāng)是兩數(shù)的最小公倍數(shù)。

3、公倍數(shù)的種種猜想,在學(xué)習(xí)公因數(shù)的時(shí)候,思想方法得到了遷移。

第一課時(shí),孩子們提出各種猜想,求最大公因數(shù),會(huì)不會(huì)也像公倍數(shù)中兩個(gè)數(shù)有特殊關(guān)系,就能輕松的求出結(jié)果?

【孩子們+數(shù)學(xué)=好玩?!?/strong>

要做找公倍數(shù)的上本子作業(yè)了,我板書給孩子們看書寫格式,他們拉著臉。

我說,我小時(shí)候,就是寫這么多字的。不過,我可以介紹你們寫一種簡單的,用“【】”包住兩個(gè)數(shù),中間用逗號(hào)隔開,這樣就能代替寫這么多字。孩子們一看,多方便呀!居然都“啪啪啪”鼓起掌來,哈!

我滿懷愜意的說,你們的掌聲與微笑中包含著對(duì)數(shù)學(xué)簡潔美的追求??!

孩子們爽歪歪了。

不過事后,一個(gè)資深老師告訴我,這個(gè)環(huán)節(jié),如果讓孩子們創(chuàng)造一下,如何追求簡潔。也許,這樣對(duì)于孩子們的思維發(fā)展更有效。一想,我也同意這般。

一節(jié)課,只要知識(shí)目標(biāo)達(dá)成,那么,過程方法與情意目標(biāo)是不可分割的。學(xué)生在達(dá)成過程方法目標(biāo)的旅程中,豈有不快樂,不感受到豐富體驗(yàn)的?