圓柱的體積教學反思8篇

時間:2022-11-30 作者:tddiction 教學計劃

只有定期寫教學反思,我們才可以讓自己的教學得到進步,我們在寫教學反思之前,一定要積極吸取先進的課改成果,范文社小編今天就為您帶來了圓柱的體積教學反思8篇,相信一定會對你有所幫助。

圓柱的體積教學反思8篇

圓柱的體積教學反思篇1

圓柱的體積這部分知識是學生在有了圓柱、圓和長方體的相關知識基礎上進行教學的。通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導過程,會計算圓柱的體積;體現(xiàn)數(shù)學知識“從生活中來到生活中去”的理念,激發(fā)學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探究。

一、讓學生在現(xiàn)實情境中體驗和理解數(shù)學

?課程標準》指出:要創(chuàng)設與學生生活環(huán)境、知識背景密切相關的、又是學生感興趣的學習情境,讓學生在觀察、操作、猜測、交流、反思等活動中體會數(shù)學知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的'情感體驗,感受數(shù)學的力量,同時掌握必要的基礎知識與基本技能。在本節(jié)課中,我給學生創(chuàng)設了生活情景(裝在杯子中的水的體積你會求嗎?圓柱形橡皮泥的體積你會求嗎?)學生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯(lián)系。在此基礎上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機滾筒的體積,能用剛才同學們想出來的辦法嗎?這一問題情境的創(chuàng)設,激發(fā)學生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。

二、鼓勵學生獨立思考,引導學生自主探索、合作交流

數(shù)學學習過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標準》所倡導的數(shù)學學習的主要方式。在本節(jié)課提示課題后,我先引導學生獨立思考要解決圓柱的體積問題,可以怎么辦?采用小組討論交流的形式。有了圓面積計算公式推導的經(jīng)驗,經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。小組拿出學具進行了動手操作,拼成了一個近似的長方體。同學們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。讓學生根據(jù)已有的知識經(jīng)驗創(chuàng)造性地建構自己的數(shù)學。通過實驗、操作、自主探究,實現(xiàn)學生主體地位、學習方式的轉(zhuǎn)變,有效地培養(yǎng)學生的創(chuàng)新意識。教學中通過等分、切、拼將圓柱體拼成一個近似的長方體,再運用多媒體顯示由圓柱體到近似的長方體的變換過程,讓學生觀察、比較近似長方體與圓柱的關系,使圓柱體體積的計算公式推導過程完全展示在學生面前。使學生感悟到轉(zhuǎn)化的思想在幾何學習中的妙用。從而產(chǎn)生一種自我嘗試、主動探究、樂于發(fā)現(xiàn)的需要、動機和能力。

三、建立切拼表象,滲透極限思想

學生進行數(shù)學探究時,由于條件的限制,沒有更多的學具提供給學生,只一個教具。為了讓學生充分體會,我把操作的機會給了學生。接著再結合多媒體演示讓學生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。學生基本沒有親身參與操作,很遺憾。

圓柱的體積教學反思篇2

教材作為教學的憑借與依據(jù),只不過是編者對學科知識、國家要求與學生進行整和思考的結晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應作為“跳板”——編者意圖與學生實際的“跳板”。因此,教學時,我們要精心研究教材,揣摩編者意圖、考慮學生實際,創(chuàng)造性地利用教材。

1、挖掘訓練空白,及時補白教材。

編者在編寫教材時,也考慮了地域、學科、時間等因素,留下了諸多空白,我們使用教材時,要深入挖掘其中的訓練空白,及時補白教材。中的例題教學,就挖掘出了教材中的訓練空白,并沒有把教學簡單地停留在一種解答方法上,而是在學生預習的基礎上引導學生深入思考,在解決問題的過程中體會“從不同的角度去考慮問題,將得到不同的結果”的道理,從而學會多角度考慮問題,提高解決問題的能力。

2、找出知識聯(lián)系,大膽重組教材。

數(shù)學知識具有一定的結構,知識間存在著密切的聯(lián)系,我們在教學時不能只著眼于本節(jié)課的教學,而應找出知識間的內(nèi)在聯(lián)系,幫助學生建立一個較為完整知識系統(tǒng)。的表1僅幫助學生熟練掌握體積公式,此外無更多的教學價值,而重組后的表2不僅實現(xiàn)了編者的意圖,而且為“比例”的教學作了提前孕伏。走出了數(shù)學教學的“只見樹木,不見森林”的“點教學”的誤區(qū)。

圓柱的體積教學反思篇3

在教學圓柱的體積時,我采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)

課的教學,我覺得有以下幾個方面值得探討:

一、聯(lián)系舊知,導入新知。

圓柱的體積的導入,在回憶了長方體、正方體體積計算方法,并強調(diào)長方體、正方體的體積都可以用底面積乘高,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學過的圖形呢?”激發(fā)學生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導入新知,思維過度自然,易接受新知。

二、動手操作,探索新知。

學生在探究新知時,教師要給予充分的思考空間,創(chuàng)設實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,學生親身參與操作,先用小刀把一塊月餅切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體。找一找:這個長方體的長相當于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導出圓柱體積的計算公式。

三、課件展示,加深理解。

為了直觀、形象,讓學生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導圓柱體積公式的過程中,要求學生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學生雖然能說出“拼成的物體越來越接近長方體。” 但是,到底拼成的圖形怎樣更接近長方體?演示動畫后,學生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉(zhuǎn)化成近似長方體的轉(zhuǎn)化方法。

四、分層練習,發(fā)散思維。

為了培養(yǎng)學生解題的靈活性,進行分層練習,拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。

但是不成功的地方也有,如學生在操作時有些學生拼的不是長方體,而是其他的形狀,這里由于是上公開課的原因就沒有有針對性的講解,只做到了多數(shù)學生的指導而沒有做到面向全體學生,這點我覺得在課堂上很難做到。

總之,通過這次的國培學習,使我的思想認識和課堂技能都有了新的認識,感謝國培!

教材作為教學的憑借與依據(jù),只不過是編者對學科知識、國家要求與學生進行整和思考的結晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應作為“跳板”——編者意圖與學生實際的“跳板”。因此,教學時,我們要精心研究教材,揣摩編者意圖、考慮學生實際,創(chuàng)造性地利用教材。

圓柱的體積教學反思篇4

今天上了《圓柱的體積》一課,覺得比以前上得輕松,回到辦公室細細品味上課的過程,頗有幾分感受:

在本課中,當學生面對新的問題情境—“圓柱的體積該怎么求?”時,能從圓的面積公式的推導,根據(jù)已有的知識作出 “轉(zhuǎn)化”的判斷。當然,由于知識經(jīng)驗的不足,表達得不是很清晰。但學生的這些都是有價值的。這些“猜想”閃爍著學生智慧的火花,折射出學生的創(chuàng)造精神。在此基礎上,讓學生以小組合作方式,利用已切開的圓柱體教具進行驗證,在討論聲中,學生獲得了真知??梢?,教師要保護學生的創(chuàng)造熱情并給以科學探究方法的引導,以發(fā)展學生的創(chuàng)造性。在這點上,我對學生的探究精神給予了充分的肯定。這節(jié)課再次讓我知道了,相信學生的創(chuàng)造力是我們設計教法的前提。

在引導學生解決“粉筆的體積”等這個問題時,課堂上有學生把它當作圓柱體積來求,提出:“誤差這么小,是可行的。”而且那位學生要求的僅是一個大約的數(shù)值,所以用這種方法可以。但這種計算粉筆體積的方法可行嗎?如果我不提出疑義,也不加以說明,就會給學生造成“圓臺的體積可以用這兩種方法來計算”的錯誤認識,對學生的后續(xù)學習會造成一些不利的影響。我就這個問題引導學生進一步探索,使學生發(fā)現(xiàn)平面圖形中的一些規(guī)律照搬到立體圖形中有時會行不通,懂得知識并非一成不變的,有其發(fā)展性,初步理解三維空間物體與二維平面圖形的聯(lián)系與區(qū)別,為進一步學習積累經(jīng)驗。學生在探索過程中,雖不能很快獲得結論性的知識,但卻嘗試了科學探究的方法,形成良好的思維品質(zhì),增進了情感體驗。這樣,既保護了學生的創(chuàng)造性,又保證了教學內(nèi)容的科學性,就學生的發(fā)展而言,誰能說讓學生經(jīng)歷這樣探究的過程,不也比獲得現(xiàn)成的結論更富有積極的意義?

圓柱的體積教學反思篇5

【學習目標】

1、探索并掌握圓柱的體積計算公式。

2、能運用公式計算圓柱的體積,并解決實際問題。

【學習過程】

一、板書課題

師:同學們,今天我們來學習“圓柱的體積”(板書課題)。

二、出示目標

本節(jié)課我們的目標是:(出示)

1、探索并掌握圓柱的體積計算公式。

2、能運用公式計算圓柱的體積,并解決實際問題。

了達到目標,下面請大家認真地看書。

三、出示自學指導

認真看課本第19頁到第20頁的例5和例6的內(nèi)容,重點看圓柱體積公式的推導過程和例6解題過程,想:

1、圓柱的體積公式是如何推導出來的?

2、圓柱的體積計算公式是什么?用字母如何表示?

5分鐘后,比誰能做對檢測題!

師:認真看書自學,比誰自學的最認真,自學效果最好。下面自學競賽開始。

四、先學

(一)看書

學生認真看書,教師巡視,督促人人都在認真地看書。

(二)檢測(找兩名學生板演,其余生寫在練習本上)

第20頁“做一做”和第21頁第5題。

要求:1、認真觀察,正確書寫,每一步都要寫出來。

2、寫完的同學認真檢查。

五、后教

(一)更正

師:寫完的同學請舉手。下面,請大家一起看黑板上這些題,發(fā)現(xiàn)問題的同學請舉手。(由差-中-好)

(二)討論

1、看第1題:認為算式列對的請舉手?

?圓柱的體積=底面積×高】

2、看第2題:認為算式列對的舉手?你是怎么思考的?

3、看計算過程和結果,認為對的舉手?

4、評正確率、板書,并讓學生同桌對改。

今天你們表現(xiàn)實在是太好了,老師真為你們感到高興。老師這里有幾道練習題,敢不敢來試一試?(出示)

六、補充練習:

1、一個圓柱形鋼材,底面積是30立方厘米,高是60厘米,體積是多少立方厘米?

2、一個圓柱體和一個長方形的體積相等,高也相等,那么它們的底面積()。

3、把一個圓柱的側(cè)面展開,得到一個正方形,圓柱的底面半徑是5厘米,這個圓柱的高是()厘米,體積是()立方厘米。.

下面,我們就來運用今天所學的知識來做作業(yè),比誰的課堂作業(yè)能做得又對又快,字體還又端正。

七、當堂訓練(課本練習三,第21頁)

作業(yè):第3、4、7、8題寫作業(yè)本上

練習:第1題寫書上,第2、6、9、10題寫練習本上

八、板書設計

課題三:圓柱的體積

圓柱的體積=底面積×高

課后反思:

本節(jié)課的教學內(nèi)容是九年義務教育六年級下冊的《圓柱的體積》,我教此內(nèi)容時,不按傳統(tǒng)的教學方法,而是采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:

一、學生學到了有價值的知識。

學生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學生在自己艱苦的學習中發(fā)現(xiàn)并從學生的口里說出來的這樣的知識具有個人意義,理解更深刻。

二、培養(yǎng)了學生的科學精神和方法。

新課程改革明確提出要“強調(diào)讓學生通過實踐增強探究和創(chuàng)新意識,學習科學研究的方法,培養(yǎng)科學態(tài)度和科學精神”。學生動手實踐、觀察得出結論的過程,就是科學研究的過程。

三、促進了學生的思維發(fā)展。

傳統(tǒng)的教學只關注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設了豐富的教學情景,學生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學基本知識,從而促進了學生的思維發(fā)展。

本節(jié)課采用新的教學方法,取得了較好的教學效果,不足之處是:由于學生自由討論、實踐和思考的時間較多,練習的時間較少。

圓柱的體積教學反思篇6

?圓柱的體積》是在學生已經(jīng)學會計算長方體、正方體的體積,并且掌握圓柱基本特征的基礎上,引導學生探索并掌握圓柱的體積公式。通過教材教學學習后,下面我從教學過程、教學策略、教學技能等方面談談自己的一些反思。

一、在教學過程的設計方面

1、導入時,力求突破教材,有所創(chuàng)新

圓柱的體積的導入,課本是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜。猜想計算方法固然有好處,但要讓學生馬上做實驗理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,銜接性不強,不利于學生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設計時不妨在回憶了長方體、正方體體積計算方法之后,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。不過應該注意時間的控制,不能花費太多的時間。

2、新課時,要實現(xiàn)人人參與,主動學習

學生進行數(shù)學探究時,應給予充分的思考空間,創(chuàng)設實踐操作的條件,營造出思考的環(huán)境氛圍。在推導圓柱體積公式過程時,我讓學生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學生小組交流長方體的長和寬與圓柱的各部分有什么關系?圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。這樣學生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設計我覺得能突破難點,課堂效果很好。

3、練習時,形式多樣,層層遞進

例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,我在設計練習時動了一番腦,花心思去考慮怎樣才能讓學生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型: a。已知圓柱底面積(s)和高(h),計算圓柱體積可以應用這一公式:v=sh。

b。已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應用這一公式:v=πr2h。

c。已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應用這一公式:v=π(d/2)2h。

d。已知圓柱底面周長(c)和高(h),計算圓柱體積可以應用這一公式:v=π(c÷π÷2)2h。

e。已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應用這一公式:v=π(s側(cè)÷h÷π÷2)2h。

因為是第一課時所以在鞏固練習中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學生真正掌握好計算圓柱體積的方法另外,還設計了解決生活中的問題,讓學生能學以致用解決生活中的問題。

二、在教學策略方面

我采用多媒體的直觀教具相結合的手段,在圓柱體積公式推導過程中指導學生充分利用手中的學具、教具,學生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結歸納等過程,發(fā)現(xiàn)了教學問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學基本知識,從而促進了學生的思維發(fā)展。而在鞏固練習這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。

三、在教學技能方面

學生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學生在自己艱苦的學習過程中發(fā)現(xiàn)并從學生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導的過程需要教師有認真準備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學只關注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設了豐富的教學情景。

四、教學要達到三個目的

一是認識等底等高的含義,便于判斷圓柱可以轉(zhuǎn)化成與它等底等高的長方體。

二是從長方體與正方體等底等高,體積也相等的事實,引發(fā)等底等高的圓柱與長方體的體積也相等的猜想,形成把圓柱轉(zhuǎn)化成長方體的活動心向。

三是復習長方體、正方體的體積公式,圓柱的體積最終也要這樣計算。

圓柱的體積教學反思篇7

一、導入時,要突破教材,有所創(chuàng)新圓柱的體積的導入,課本是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜。猜想計算方法固然有好處,但要讓學生馬上做實驗理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,銜接性不強,不利于學生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認為,不妨在回憶了長方體、正方體體積計算方法之后,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。

二、新課時,要實現(xiàn)人人參與,主動學習學生進行數(shù)學探究時,教師應給予充分的思考空間,創(chuàng)設實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,由于學校教學條件差,沒有更多的學具提供給學生,只是由教師示范演示推導過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。學生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學階段立體圖形的教學難點,學生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學生思考如何利用已知圖形體積和教學思想去解決這一問題。學生缺乏行為、認知的投入和積極的情感投入,所以,課堂效果差就可想而知了。

三、練習時,要形式多樣,層層遞進

例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,教師在設計練習時要多動腦,花心思去考慮怎樣才能讓學生用最短的時間完成不同類型的題目。

圓柱的體積教學反思篇8

一、讓操作更詳實,留下思考的痕跡

?數(shù)學課程標準》指出:動手實踐、自主探索、合作交流是學生學習數(shù)學的重要方式。組織學生在實踐操作中探究發(fā)現(xiàn)規(guī)律,可以充分調(diào)動學生的各種感官,從感性到理性,從實踐到認識,從具體到抽象,引導學生積極動手動腦、概括分析、抽象推理等,這不僅有利于學生思維的發(fā)展,而且也可以加深學生對數(shù)學知識的理解和掌握。尤其是對于幾何知識的學習,課堂教學中的動手操作就顯得更加重要。

在探索圓柱體積計算方法的時候,教師試圖讓學生結合圓面積計算的探索方法,能聯(lián)想到可以把,圓柱的體積轉(zhuǎn)化成已知的立體圖形的體積。但這種方法似乎在學生的印象中并不深刻,因此學生在探索的一開始,學生就遇到了思考的困惑,對他后面的探索造成了很大的影響。在教師的印象中圓面積的計算公式推導應該是我們花了很多時間去讓學生操作的,但是操作的效果卻如此之差。我們不妨反問自己一下,究竟自己在教學的時候是否用好了學生的操作,讓學生對操作的過程有深刻的體會與認識,在操作中是否激起了學生的思考。

當學生想到了探索方法后,卻因為一些客觀的原因,沒有能夠讓學生親自去套作一番,光是看課件、看其他同學的操作,對于大部分學生來說,印象是不夠深刻的,體會也是不到位的。畢竟這部分內(nèi)容的學習對與學生來說也是有一定困難的,雖然是六年級的同學,但他們的空間想象能力還是不夠的,需要實打?qū)嵉牟僮?,讓他們有個直觀的認識。

所以我認為我們的課堂上應放手讓學生去操作,用直觀的操作,留下自己思考的痕跡,為進一步探索知識做好準備。

二、讓觀察更細致,尋找知識的聯(lián)系

數(shù)學觀察力,是新課標中對提出學生應必備的一種重要數(shù)學能力。學生在操作的基礎上要學會觀察,挖掘知識之間的聯(lián)系,真正體現(xiàn)操作的價值。

在圓柱的體積的教學中,教師讓學生去發(fā)現(xiàn)圓柱體與通過切割后形成的長方體之間的聯(lián)系時,不少學生都一時摸不著頭腦。這時,教師不妨給孩子一些觀察的提示,如:“拼成的長方體的底面積與原來圓柱的底面積有什么關系?為什么是相等的?”“拼成的長方體的高與原來圓柱的高有什么關系?為什么是相等的?”通過學生直觀的觀察,讓學生去挖掘數(shù)學本質(zhì)上的一些聯(lián)系,讓學生在知識的探索過程中有一個完成的體驗過程,也對所學的知識有一個更好的理解。

觀察是智慧的源泉,讓學生學會從變化的角度去觀察,發(fā)現(xiàn)知識之間的聯(lián)系,這也是一種令學生終身受益的學習方法。

三、讓探索更深入,渴求方法的掌握

通過操作與觀察,可以說學生積累了一定的認知經(jīng)驗,這種經(jīng)驗我想不應該只停留在一節(jié)課、一個內(nèi)容的學習中,可以延伸到很多知識的學習中去,從而形成一定的學習方法。就如在圓柱的體積的學習中,圓柱體轉(zhuǎn)化成已經(jīng)學過的長方體的體積來探究的這種方法在之前學生已經(jīng)接觸過,如:圓面積的計算方法、平行四邊形的面積計算方法,我們都是通過將未知的圖形轉(zhuǎn)化成已知圖形來探索面積計算的方法。如果我們在教學的過程中能夠很好地重視學生的操作經(jīng)驗積累,并形成一定的方法,相信學生在溝通新知和舊知之間的聯(lián)系時會更加的自然而然,也能順利的實現(xiàn)知識的正遷移。

因此,在數(shù)學學習的過程中,應該讓學生的探索過程更加的深入,形成一定的學習方法,為今后的學習積累知識經(jīng)驗的同時