為了新學期的教學工作順利開展,老師們需要制定一份教學設計,為了取得更出色的教學成果,我們需要在教學開始前,制定好教學設計,范文社小編今天就為您帶來了教學設計數學模板7篇,相信一定會對你有所幫助。
教學設計數學模板篇1
教學設計示例
加法原理和乘法原理
教學目標
正確理解和掌握加法原理和乘法原理,并能準確地應用它們分析和解決一些簡單的問題,從而發(fā)展學生的思維能力,培養(yǎng)學生分析問題和解決問題的能力. 教學重點和難點
重點:加法原理和乘法原理.
難點:加法原理和乘法原理的準確應用. 教學用具
投影儀. 教學過程設計
(一)引入新課
從本節(jié)課開始,我們將要學習中學代數內容中一個獨特的部分——排列、組合、二項式定理.它們研究對象獨特,研究問題的方法不同一般.雖然份量不多,但是與舊知識的聯系很少,而且它還是我們今后學習概率論的基礎,統(tǒng)計學、運籌學以及生物的選種等都與它直接有關.至于在日常的工作、生活上,只要涉及安排調配的問題,就離不開它.
今天我們先學習兩個基本原理.
(二)講授新課
1.介紹兩個基本原理
先考慮下面的問題:
問題1:從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4個班次,汽車有
個班次,輪船有3個班次.那么一天中乘坐這些交通工具從甲地到乙地,共有多少種不同的走法?
因為一天中乘火車有4種走法,乘汽車有2種走法,乘輪船有3種走法,每種走法都可以完成由甲地到乙地這件事情.所以,一天中乘坐這些交通工具從甲地到乙地共有4+2+3=9種不同的走法.
這個問題可以總結為下面的一個基本原理(打出片子——加法原理):
加法原理:做一件事,完成它可以有幾類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么,完成這件事共有n=m1+m2+…+mn種不同的方法.
請大家再來考慮下面的問題(打出片子——問題2):
問題2:由a村去b村的道路有3條,由b村去(見下圖),從a村經b村去c村,c村的道路有2條共有多少種不同的走法?
這里,從a村到b村,有3種不同的走法,按這3種走法中的每一種走法到達b村后,再從b村到c村又各有2種不同的走法,因此,從a村經b村去c村共有3×2=6種不同的走法.
一般地,有如下基本原理(找出片子——乘法原理):
乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有n=m1×m2×…×mn種不同的方法. 2.淺釋兩個基本原理
兩個基本原理的用途是計算做一件事完成它的所有不同的方法種數.
比較兩個基本原理,想一想,它們有什么區(qū)別?
兩個基本原理的區(qū)別在于:一個與分類有關,一個與分步有關.
看下面的分析是否正確(打出片子——題1,題2):
題1:找1~10這10個數中的所有合數.第一類辦法是找含因數2的合數,共有4個;第二類辦法是找含因數3的合數,共有2個;第三類辦法是找含因數5的合數,共有1個.
1~10中一共有n=4+2+1=7個合數.
題2:在前面的問題2中,步行從a村到b村的北路需要8時,中路需要4時,南路需要6時,b村到c村的北路需要5時,南路需要3時,要求步行從a村到c村的總時數不超過12時,共有多少種不同的走法?
第一步從a村到b村有3種走法,第二步從b村到c村有2種走法,共有n=3×2=6種不同走法.
題2中的合數是4,6,8,9,10這五個,其中6既含有因數2,也含有因數3;10既含有因數2,也含有因數5.題中的分析是錯誤的.
從a村到c村總時數不超過12時的走法共有5種.題2中從a村走北路到b村后再到c村,只有南路這一種走法.
(此時給出題1和題2的目的是為了引導學生找出應用兩個基本原理的注意事項,這樣安排,不但可以使學生對兩個基本原理的理解更深刻,而且還可以培養(yǎng)學生的學習能力)
進行分類時,要求各類辦法彼此之間是相互排斥的,不論哪一類辦法中的哪一種方法,都能單獨完成這件事.只有滿足這個條件,才能直接用加法原理,否則不可以.
如果完成一件事需要分成幾個步驟,各步驟都不可缺少,需要依次完成所有步驟才能完成這件事,而各步要求相互獨立,即相對于前一步的每一種方法,下一步都有m種不同的方法,那么計算完成這件事的方法數時,就可以直接應用乘法原理.
也就是說:類類互斥,步步獨立.
(在學生對問題的分析不是很清楚時,教師及時地歸納小結,能使學生在應用兩個基本原理時,思路進一步清晰和明確,不再簡單地認為什么樣的分類都可以直接用加法,只要分步而不管是否相互聯系就用乘法.從而深入理解兩個基本原理中分類、分步的真正含義和實質)
(三)應用舉例
現在我們已經有了兩個基本原理,我們可以用它們來解決一些簡單問題了.
例1 書架上放有3本不同的數學書,5本不同的語文書,6本不同的英語書.
(1)若從這些書中任取一本,有多少種不同的取法?
(2)若從這些書中,取數學書、語文書、英語書各一本,有多少種不同的取法?
(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法?
(讓學生思考,要求依據兩個基本原理寫出這3個問題的答案及理由,教師巡視指導,并適時口述解法)
(1)從書架上任取一本書,可以有3類辦法:第一類辦法是從3本不同數學書中任取1本,有3種方法;第二類辦法是從5本不同的語文書中任取1本,有5種方法;第三類辦法是從6本不同的英語書中任取一本,有6種方法.根據加法原理,得到的取法種數是
n=m1+m2+m3=3+5+6=14.故從書架上任取一本書的不同取法有14種.
(2)從書架上任取數學書、語文書、英語書各1本,需要分成三個步驟完成,第一步取1本數學書,有3種方法;第二步取1本語文書,有5種方法;第三步取1本英語書,有6種方法.根據乘法原理,得到不同的取法種數是n=m1×m2×m3=3×5×6=90.故,從書架上取數學書、語文書、英語書各1本,有90種不同的方法.
(3)從書架上任取不同科目的書兩本,可以有3類辦法:第一類辦法是數學書、語文書各取1本,需要分兩個步驟,有3×5種方法;第二類辦法是數學書、英語書各取1本,需要分兩個步驟,有3×6種方法;第三類辦法是語文書、英語書各取1本,有5×6種方法.一共得到不同的取法種數是n=3×5+3×6+5×6=63.即,從書架任取不同科目的書兩本的不同取法有63種.
例2 由數字0,1,2,3,4可以組成多少個三位整數(各位上的數字允許重復)?
解:要組成一個三位數,需要分成三個步驟:第一步確定百位上的數字,從1~4這4個數字中任選一個數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個位上的數字,仍有5種選法.根據乘法原理,得到可以組成的三位整數的個數是n=4×5×5=100.
答:可以組成100個三位整數.
教師的連續(xù)發(fā)問、啟發(fā)、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高.教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質的理解,周密的考慮,準確的表達、規(guī)范的書寫,對于學生周密思考、準確表達、規(guī)范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎.
(四)歸納小結
歸納什么時候用加法原理、什么時候用乘法原理:
分類時用加法原理,分步時用乘法原理.
應用兩個基本原理時需要注意分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的.
(五)課堂練習
p222:練習1~4.
(對于題4,教師有必要對三個多項式乘積展開后各項的構成給以提示)
(六)布置作業(yè)
p222:練習5,6,7.
補充題:
1.在所有的兩位數中,個位數字小于十位數字的共有多少個?
(提示:按十位上數字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)
2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第
一、
二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數.
(提示:需要按三個志愿分成三步,共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數中,有且只有兩個數字相同的三位數共有多少個?
(提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數字相同的三位數)
4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?
(提示:由于8+5=13>10,所以10人中必有3人既會英語又會日語.
(1)n=5+2+3;(2)n=5×2+5×3+2×3)
教學設計數學模板篇2
一、教學目標
1、知識目標:掌握數軸三要素,會畫數軸。
2、能力目標:能將已知數在數軸上表示,能說出數軸上的點表示的數,知道有理數都可以用數軸上的點表示;
3、情感目標:向學生滲透數形結合的思想。
二、教學重難點
教學重點:數軸的三要素和用數軸上的點表示有理數。
教學難點:有理數與數軸上點的對應關系。
三、教法
主要采用啟發(fā)式教學,引導學生自主探索去觀察、比較、交流。
四、教學過程
(一)創(chuàng)設情境激活思維
1.學生觀看鐘祥二中相關背景視頻
意圖:吸引學生注意力,激發(fā)學生自豪感。
2.聯系實際,提出問題。
問題1:鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
師生活動:學生思考解決問題的方法,學生代表畫圖演示。
學生畫圖后提問:
1.馬路用什么幾何圖形代表?(直線)
2.文中相關地點用什么代表?(直線上的點)
3.學校大門起什么作用?(基準點、參照物)
4.你是如何確定問題中各地點的位置的?(方向和距離)
設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數學抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數和負數可以表示兩種具有相反意義的量,我們能不能直接用數來表示這些地理位置和學校大門的相對位置關系呢?
師生活動:
學生思考后回答解決方法,學生代表畫圖。
學生畫圖后提問:
1.0代表什么?
2.數的符號的實際意義是什么?
3.-75表示什么?100表示什么?
設計意圖:繼續(xù)以三要素為定向,將點用數表示,實現第二次抽象,為定義數軸概念提供直觀基礎。
問題3:生活中常見的溫度計,你能描述一下它的結構嗎?
設計意圖:借助生活中的常用工具,說明正數和負數的作用,引導學生用三要素表達,為定義數軸的概念提供直觀基礎。
問題4:你能說說上述2個實例的共同點嗎?
設計意圖:進一步明確“三要素”的意義,體會“用點表示數”和“用數表示點的思想方法,為定義數軸概念提供又一個直觀基礎。
(二)自主學習探究新知
學生活動:帶著以下問題自學課本第8頁:
1.什么樣的直線叫數軸?它具備什么條件。
2.如何畫數軸?
3.根據上述實例的經驗,“原點”起什么作用?
4.你是怎么理解“選取適當的長度為單位長度”的?
師生活動:
學生自學完后,請代表上黑板畫一條數軸,講解畫數軸的一般步驟。
設計意圖:明確畫數軸的步驟,使數軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數軸的定義。
至此,學生已會畫數軸,師生共同歸納總結(板書)
①數軸的定義。
②數軸三要素。
練習:(媒體展示)
1.判斷下列圖形是否是數軸。
2.口答:數軸上各點表示的數。
3.在數軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小組合作交流展示
問題:觀察數軸上的點,你有什么發(fā)現?
數軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數,對表示a的點和-a的點進行同樣的討論。
設計意圖:通過從特殊到一般的方法歸納出數軸上不同位置點的特點,培養(yǎng)學生的抽象概括能力。
(四)歸納總結反思提高
師生共同回顧本節(jié)課所學主要內容,回答以下問題:
1.什么是數軸?
2.數軸的“三要素”各指什么?
3.數軸的畫法。
設計意圖:梳理本節(jié)課內容,掌握本節(jié)課的核心――數軸“三要素”。
(五)目標檢測設計
1.下列命題正確的是()
a.數軸上的點都表示整數。
b.數軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
c.數軸包括原點與正方向兩個要素。
d.數軸上的點只能表示正數和零。
2.畫數軸,在數軸上標出-5和+5之間的所有整數,列舉到原點的距離小于3的所有整數。
3.畫數軸,表示下列有理數數的點中,觀察數軸,在原點左邊的點有______x個。4.在數軸上點a表示-4,如果把原點o向負方向移動1.5個單位,那么在新數軸上點a表示的數是________。
五、板書
1.數軸的定義。
2.數軸的三要素(圖)。
3.數軸的畫法。
4.性質。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
思考:如何簡明地用數表示這些地理位置與學校大門的相對位置關系?
活動二:讀一讀
帶著以下問題閱讀教科書p8頁:
1.什么樣的直線叫數軸?
定義:規(guī)定了________x、________、________x的直線叫數軸。
數軸的三要素:________x、________x、__________。
2.畫數軸的步驟是什么?
3.“原點”起什么作用?__________
4.你是怎么理解“選取適當的長度為單位長度”的?
練習:
1.畫一條數軸
2.在你畫好的數軸上表示下列有理數:1.5,-2,-2.5,2,2.5,0,-1.5
活動三:議一議
小組討論:觀察你所畫的數軸上的點,你有什么發(fā)現?
歸納:一般地,設a是一個正數,則數軸上表示數a在原點的____邊,與原點的距離是____個單位長度;表示數-a的點在原點的____邊,與原點的距離是____個單位長度.
練習:
1.數軸上表示-3的點在原點的______x側,距原點的距離是______;表示6的點在原點的______側,距原點的距離是______;兩點之間的距離為______x個單位長度。
2.距離原點距離為5個單位的點表示的數是________。
3.在數軸上,把表示3的點沿著數軸負方向移動5個單位長度,到達點b,則點b表示的數是________。
附:目標檢測
1.下列命題正確的是()
a.數軸上的點都表示整數。
b.數軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
c.數軸包括原點與正方向兩個要素。
d.數軸上的點只能表示正數和零。
2.畫數軸,在數軸上標出-5和+5之間的所有整數.列舉到原點的距離小于3的所有整數。
3.畫數軸,觀察數軸,在原點左邊的點有______x個。
4.在數軸上點a表示-4,如果把原點o向負方向移動1.5個單位,那么在新數軸上點a表示的數是________。
教學設計數學模板篇3
一、教材分析
本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內角和。
二、教學目標
1、知識目標:了解多邊形內角和公式。
2、數學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標:通過猜想、推理活動感受數學活動充滿著探索以及數學結論的確定性,提高學生學習熱情。
三、教學重、難點
重點:探索多邊形內角和。
難點:探索多邊形內角和時,如何把多邊形轉化成三角形。
四、教學方法:引導發(fā)現法、討論法
五、教具、學具
教具:多媒體課件
學具:三角板、量角器
六、教學媒體:大屏幕、實物投影
七、教學過程:
(一)創(chuàng)設情境,設疑激思
師:大家都知道三角形的內角和是180,那么四邊形的內角和,你知道嗎?
活動一:探究四邊形內角和。
在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數,然后把四個角加起來,發(fā)現內角和是360。
方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現兩個三角形內角和相加是360。
接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。
師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
活動二:探究五邊形、六邊形、十邊形的內角和。
學生先獨立思考每個問題再分組討論。
關注:
(1)學生能否類比四邊形的方式解決問題得出正確的結論。
(2)學生能否采用不同的方法。
學生分組討論后進行交流(五邊形的內角和)
方法1:把五邊形分成三個三角形,3個180的和是540。
方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結果得540。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結果得540。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結果得540。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720,十邊形內角和是1440。
(二)引申思考,培養(yǎng)創(chuàng)新
師:通過前面的討論,你能知道多邊形內角和嗎?
活動三:探究任意多邊形的內角和公式。
思考:
(1)多邊形內角和與三角形內角和的關系?
(2)多邊形的邊數與內角和的關系?
(3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?
學生結合思考題進行討論,并把討論后的結果進行交流。
發(fā)現1:四邊形內角和是2個180的和,五邊形內角和是3個180的和,六邊形內角和是4個180的和,十邊形內角和是8個180的和。發(fā)現2:多邊形的邊數增加1,內角和增加180。
發(fā)現3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。
得出結論:多邊形內角和公式:(n-2)·180。
(三)實際應用,優(yōu)勢互補
1、口答:(1)七邊形內角和()
(2)九邊形內角和()
(3)十邊形內角和()
2、搶答:(1)一個多邊形的內角和等于1260,它是幾邊形?
(2)一個多邊形的內角和是1440,且每個內角都相等,則每個內角的度數是()。
3、討論回答:一個多邊形的內角和比四邊形的內角和多540,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?
(四)概括存儲
學生自己歸納總結:
1、多邊形內角和公式
2、運用轉化思想解決數學問題
3、用數形結合的思想解決問題
(五)作業(yè):練習冊第93頁1、2、3
八、教學反思:
1、教的轉變
本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數學問題,體驗發(fā)現的樂趣。
2、學的轉變
學生的角色從學會轉變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉變
整節(jié)課以“流暢、開放、合作、隱導”為基本特征,教師對學生的思維減少干預,教學過程呈現一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現的價值。
教學設計數學模板篇4
教學目標:
1、經歷收集數據、分析數據的活動,體會統(tǒng)計在實際生活中的應用。
2、收集統(tǒng)計在生活中應用的例子,整理收集數據的方法。
3、在解決問題的過程中,整理所學習的統(tǒng)計圖,和統(tǒng)計量,能用自己的語言描述過各種統(tǒng)計圖的特點,掌握整理收集數據的方法。
教學過程:
一、課前預習,出示預習提綱:
1、我們學習了哪幾種統(tǒng)計圖?
2、這幾種統(tǒng)計圖各有什么特點?
3、概率的知識有哪些?
二、展示與交流
(一)提出問題
1、(出示問題情境)我們班要和希望小學的六(1)班建立手拉手班級,怎么樣向他們介紹我們班的一些情況呢?(指名回答)
2、師:先獨立列出幾個你想調查的問題。(寫在練習本上)
3、四人小組交流,整理出你們小組都比較感興趣的,又能實施的3個問題。(小組匯報、交流、整理)
4、接著全班匯報交流(師羅列在黑板上)
師:大家想調查這么多的問題,現在我們班選擇其中有價值又能實施的問題進行調查。(師根據生的回答進行歸納、整理)
(二)收集數據和整理數據
1、師:調查這幾個問題,你需要收集哪些數據?怎么樣收集這些數據?與同伴交流收集數據的方法。
2、師:開展實際調查的話,如何進行調查比較有效?在調查的時候,大家需要注意什么?
(三)開展調查
1、針對學生提出的某個問題,先組織小組有效的開展收集和整理數據的活動,然后把數據記錄下來,并進行整理。
2、師:誰來說一說你們小組是怎么樣分工,怎么樣調查和記錄數據的?(指名匯報)
3、全班匯總、整理、歸納各小組數據。(板書)
4、師:分析上面的數據,你能得到哪些信息?
5、師:根據整理的數據,想一想繪制什么統(tǒng)計圖比較好呢?
6、師:根據這些信息,你還能提出什么數學問題?
(四)回顧統(tǒng)計活動
1、師:在剛才的統(tǒng)計活動,我們都做了些什么?你能按順序說一說嗎?
師板書:提出問題——收集數據——整理數據——分析數據——作出決策。
2、收集在生活中應用統(tǒng)計的例子,并說說這些例子中的數據告訴人們哪些信息。(全班交流)
指名同學匯報,其他同學注意聽,并指出這個同學舉的例子中你可以獲得什么信息?
3、結合生活中的例子說說收集數據有哪些方法?
(1)先讓學生在小組內交流,引導學生結合例子(充分利用第2題中收集來的實例)來說說自己的方法。
(2)師歸納:常用的收集數據的方法有:查閱資料、詢問他人、調查實驗等。
教學設計數學模板篇5
新學期即將到來,我們又要投入到緊張、繁忙而有序地教育教學工作中,使自己今后的教學工作中能有效地、有序地貫徹新的教育精神,圍繞我校新學期的工作計劃要求制定九年級第一學期數學教學設計:
開學初就要認真通讀數學新課程標準,潛心研究,反復揣摩。以《數學課程標準》基本理念為依據是用好教材的前提,所以一定要認真領會編導意圖,去指導教學實踐,以便采取靈活、有效的教學方法,使數學教學真正面向全體學生,促進學生全面、持續(xù)、和諧的發(fā)展。
本學期教學內容是華東師范版九年級教材,內容與現實生活聯系非常密切,知識的綜合性很強,每章都有考試熱點內容。因此對每一章的教學都要是師生交往、互動、共同發(fā)展的過程。要做到讓學生成為學習的主人,教師成為學生數學學習的組織者和引導者,從學生的生活經驗和已有的知識背景出發(fā),在活動中激發(fā)學生的學習潛能,促使學生在自主探索與合作交流的過程中真正理解和掌握基本數學知識、技能、思想、方法,提高解決問題的能力。 在學生方面,少部分學生基礎還可以,而大部分學生解決基礎知識的能力很差,有的以前學的知識遺忘了,通過了解,很多學生對數學不感興趣,是在老師的逼迫下被動學習。所以作為教師,首先一定要想方設法,鼓勵他們增強信心,才能改變現狀。
1、備好課是上好課的基礎,是提高課堂教學質量的關鍵,所以在備課時深入鉆研教材,正確地掌握和處理好教材的重點、難點,同時更重要的是備教法和學生的學法。
2、上課時教學目的要明確,講課時要圍繞中心內容,突出重點,突破難點。整個教學過程必須嚴密組織,使課堂教學既層次分明,又協調緊湊。教學時要面向全體學生,使各類學生都學有所得。特別是要照顧到差生,力求使他們能掌握本課時的基本知識和技能。
3、作業(yè)要求要嚴格,但布置的作業(yè)要適量。精選作業(yè),盡量根據不同程度學生,布置適當的選做題,以關注不同層次的學生。作批改要認真、及時,
批語要多鼓勵學生,根據作業(yè)情況查缺補漏,做好個別輔導。
4、個別輔導方面在各環(huán)節(jié)上照顧后進生的實際。特別是精心設計一些適合差生思考的問題和練習作業(yè),引導他們思考,激發(fā)他們的學習興趣。充分利用自習課或課余時間,加強對后進生的個別輔導。
本學期的教學目標是提高平均分和優(yōu)秀率上漲的幅度,減少學困生。 在教學實踐中,常常發(fā)現相當一部分學生一開始不適應教師的教法,出現消化不良的癥狀,究其原因,就學生方面主要有三點:一是學習態(tài)度不夠端正;二是智能上存在差異;三是學習方法不科學。我以為施教之功,貴在引導,重在轉化,妙在舉一反三。因此為防止起始課上的分化,我準備具體從以下幾方面入手:
(一)掌握學生心理特征,激發(fā)他們學習數學的積極性。
學生進入初三,畢業(yè)班教學時間緊,任務重,要求高,面對升學的壓力,使學生在心理上發(fā)生了較大的變化,有的學生自己就放棄了自己,失去學習的興趣。鑒于這些心理特征,教師必須十分重視激發(fā)學生的'求知欲,有目的地時時地向學生介紹數學在日常生活中的應用,還要想辦法讓學生親身體驗生活離開數學知識將無法進行。從而激發(fā)他們學習數學知識的直接興趣。同時在言行上,教師要切忌傷害學生的自尊心,多鼓勵,多表揚。
(二)以課堂教學為主陣地
(1)在教師這方面,首先做到要通讀教材,駕奴教材,認真?zhèn)湔n,認真?zhèn)鋵W生,認真 備教法。對所講知識的每一環(huán)節(jié)的過渡都要精心設計。給學生出示的問題也要有層次,有梯度,哪些是獨立完成的,哪些是小組合作完成的,知識的達標程度教師更要掌握。同時作業(yè)也要分層次進行,使優(yōu)生吃飽,差生吃好。在學生方面,把學生按座次分成學習小組,選出小組長,在課堂上發(fā)揮小組的集體力量,由于小組之間比賽競爭激烈,所以小組成員必須積極努力才能不給集體脫后腿。這樣用輔優(yōu),幫差,帶中間的方法來大面積提高教學質量。
(2)重視學生能力的培養(yǎng)
九年級的數學是培養(yǎng)學生運算能力,發(fā)展思維能力和綜合運用知識解決實際問題的能力,從而培養(yǎng)學生的創(chuàng)新意識。根據當前素質教育和新課改的的精神,在教學中我著重對學生進行上述幾方面能力的培養(yǎng)。在教學中作到三講、三不講:即學生自學能學會的不講在教師的引導下能自己總結的不講在教師的引導下學生互相幫助下能學會的不講。從而培養(yǎng)學生的自主、合作、探究能力。充分發(fā)揮學生的主體作用,把學生的潛能全部挖掘出來。
教學設計數學模板篇6
1、理論學習:
抓好教育理論特別是最新的教育理論的學習,及時了解課改信息和課改動向,轉變教學觀念,形成新課標教學思想,樹立現代化、科學化的教育思想。
2、做好各時期的計劃:
為了搞好教學工作,以課程改革的思想為指導,根據學校的工作安排以及數學教學任務和內容,做好學期教學工作的總體計劃和安排,并且對各單元的進度情況進行詳細計劃。
3、備好每堂課
認真鉆研課標和教材,做好備課工作,對教學情況和各單元知識點做到心中有數,備好學生的學習和對知識的掌握情況,寫好每節(jié)課的教案為上好課提供保證,做好課后反思和課后總結工作,以提高自己的教學理論水平和教學實踐能力。
4、做好課堂教學
創(chuàng)設教學情境,激發(fā)學習興趣,愛因斯曾經說過:“興趣是最好的老師?!奔ぐl(fā)學生的學習興趣,是數學教學過程中提高質量的重要手段之一。結合教學內容,選一些與實際聯系緊密的數學問題讓學生去解決,教學組織合理,教學內容語言生動。想盡各種辦法讓學生愛聽、樂聽,以全面提高課堂教學質量。
5、批改作業(yè)
精批細改每一位學生的每份作業(yè),學生的作業(yè)缺陷,做到心中有數。對每位學生的作業(yè)訂正和掌握情況都盡力做到及時反饋,再次批改,讓學生獲得了一個較好的鞏固機會。
6、做好課外輔導
全面關心學生,這是老師的神圣職責,在課后能對學生進行針對性的輔導,解答學生在理解教材與具體解題中的困難,使優(yōu)生盡可能“吃飽”,獲得進一步提高;使差生也能及時掃除學習障礙,增強學生信心,盡可能“吃得了”。充分調動學生學習數學的積極性,擴大他們的知識視野,發(fā)展智力水平,提高分析問題與解決問題的能力。
總之通過做好教學工作的每一環(huán)節(jié),盡最大的努力,想出各種有效的辦法,以提高教學質量。
教學設計數學模板篇7
一.教學目標:
1.認知目標:
1)了解二元一次方程組的概念。
2)理解二元一次方程組的解的概念。
3)會用列表嘗試的方法找二元一次方程組的解。
2.能力目標:
1)滲透把實際問題抽象成數學模型的思想。
2)通過嘗試求解,培養(yǎng)學生的探索能力。
3.情感目標:
1)培養(yǎng)學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
二.教學重難點
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。
三.教學過程
(一)創(chuàng)設情景,引入課題
1.本班共有40人,請問能確定男女生各幾人嗎?為什么?
(1)如果設本班男生x人,女生y人,用方程如何表示?(x+y=40)
(2)這是什么方程?根據什么?
2.男生比女生多了2人。設男生x人,女生y人.方程如何表示? x,y的值是多少?
3.本班男生比女生多2人且男女生共40人.設該班男生x人,女生y人。方程如何表示?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
像這樣,同一個未知數表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
4.點明課題:二元一次方程組。
(設計意圖:從學生身邊取數據,讓他們感受到生活中處處有數學)
(二)探究新知,練習鞏固
1.二元一次方程組的概念
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解.]
(2)練習:判斷下列是不是二元一次方程組,學生作出判斷并要說明理由。
①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0
(設計意圖:這一環(huán)節(jié)是本課設計的重點,為加深學生對“含有未知數的項的次數”的內涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發(fā)學生對“項的次數的思考”,進而完善血生對二元一次方程概念的理解。)
2.二元一次方程組的解的概念
(1)由學生給出引例的答案,教師指出這就是此方程組的解。
(2)練習:把下列各組數的題序填入圖中適當的位置:
方程x+y=0的解,方程2x+3y=2的解,方程組的解。
(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
(4)練習:已知是方程組的解,求a,b的值。
(三)合作探索,嘗試求解
現在我們一起來探索如何尋找方程組的解呢?
1.已知兩個整數x,y,試找出方程組的解.
學生兩人一小組合作探索。并讓已經找出方程組解的學生利用實物投影,講明自己的解題思路。
一般思路:由一個方程取適當的xy的值,代到另一個方程嘗試.
(設計意圖:把課堂還給學生,讓他們探索并解答問題,在獲取新知識的同時也積累數學活動的經驗)
2.據了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1) 設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
3.例 已知方程3x+2y=10
⑴當x=2時,求所對應的y 的值;
⑵取一個你自己喜歡的數作為x的值,求所對應的y的值;
⑶用含x的代數式表示y;
⑷用含y 的代數式表示x;
⑸當x=-2,0 時,所對應的y值是多少;
(設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數的代數式表示另一個未知數,然后把它與原方程比較,把一個未知數的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數的代數式表示另一個未知數”的過程。)
(四)課堂小結,布置作業(yè)
1.這節(jié)課學哪些知識和方法?
2.你還有什么問題或想法需要和大家交流?
3.教材p82
教學設計說明:
1.本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的`概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數據,得出結果,再讓他們在積極嘗試后進行講解,實現生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3.本課在設計時對教材也進行了適當改動。例題方面考慮到數碼時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。