想必每個教師在上課之前都會進行教案的書寫,教案是教學活動中的根本,所以在制定的時候一定要足夠細致,范文社小編今天就為您帶來了高一函數(shù)教案6篇,相信一定會對你有所幫助。
高一函數(shù)教案篇1
教學目標 :①掌握對數(shù)函數(shù)的性質(zhì)。
②應用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復
合函數(shù)的定義域、值 域及單調(diào)性。
③ 注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高
解題能力。
教學重點與難點:對數(shù)函數(shù)的性質(zhì)的應用。
教學過程 設(shè)計:
⒈復習提問:對數(shù)函數(shù)的概念及性質(zhì)。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調(diào)性取決于底的大?。寒?
調(diào)遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調(diào)遞
增,所以loga5.1
板書:
解:Ⅰ)當0
∵5.1loga5.9
Ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1
師:請同學們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.51,
log0.50.6
板書:略。
師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函
數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù)
函數(shù)圖象的位置關(guān)系來比大小。
2 函數(shù)的定義域, 值 域及單調(diào)性。
例 2 ⑴求函數(shù)y=的定義域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要
使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,
被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于
零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進去,求
它們共同作用的結(jié)果。)
生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,
再根據(jù)對數(shù)函數(shù)的單調(diào)性求解。
師:請你寫一下這道題的解題過程。
生:
解: x2+2x-3>0 x1
(3x+3)>0 , x>-1
x2+2x-3
不等式的解為:1
例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復合函數(shù)的思想方法。
下面請同學們來解⑴。
生:此函數(shù)可看作是由y=log0.5u, u=x- x2復合而成。
板書:
解:⑴∵u=x- x2>0, ∴0
u=x- x2=-(x-0.5)2+0.25, ∴0
∴y=log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u=x- x2
y=log0.5u
y=log0.5(x- x2)
函數(shù)y=log0.5(x- x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞 增區(qū)間[0.5,1)
注:研究任何函數(shù)的性質(zhì)時,都應該首先保證這個函數(shù)有意義,否則
函數(shù)都不存在,性質(zhì)就無從談起。
師:在⑴的基礎(chǔ)上,我們一起來解⑵。請同學們觀察一下⑴與⑵有??
么區(qū)別?
生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。
師:那么⑵如何來解?
生:只要對a進行分類討論,做法與⑴類似。
板書:略。
⒊小結(jié)
這堂課主要講解如何應用對數(shù)函數(shù)的性質(zhì)解決一些問題,希望能
通過這堂課使同學們對等價轉(zhuǎn)化、分類討論等思想加以應用,提高解題能力。
⒋作業(yè)
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))
⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)
①求它的單調(diào)區(qū)間;②當0
⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)
①求它的定義域;②討論它的`奇偶性; ③討論它的單調(diào)性。
⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1),
①求它的定義域;②當x為何值時,函數(shù)值大于1;③討論它的
單調(diào)性。
5.課堂教學設(shè)計說明
這節(jié)課是安排為習題課,主要利用對數(shù)函數(shù)的性質(zhì)解決一些問題,整個一堂課分兩個部分:一 .比較數(shù)的大小,想通過這一部分的練習,
培養(yǎng)同學們構(gòu)造函數(shù)的思想和分類討論、數(shù)形結(jié)合的思想。二.函數(shù)的定義域, 值 域及單調(diào)性,想通過這一部分的練習,能使同學們重視求函數(shù)的定義域。因為學生在求函數(shù)的值域和單調(diào)區(qū)間時,往往不考慮函數(shù)的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調(diào)動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結(jié),以使好學生掌握地更完善,較差的學生也能夠跟上。
高一函數(shù)教案篇2
學習目標
1.函數(shù)奇偶性的概念
2.由函數(shù)圖象研究函數(shù)的奇偶性
3.函數(shù)奇偶性的判斷
重點:
能運用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性
難點:
理解函數(shù)的奇偶性
知識梳理:
1.軸對稱圖形:
2中心對稱圖形:
【概念探究】
1、 畫出函數(shù) ,與 的圖像;并觀察兩個函數(shù)圖像的對稱性。
2、 求出 , 時的函數(shù)值,寫出
結(jié)論:
3、 奇函數(shù):___________________________________________________
4、 偶函數(shù):______________________________________________________
【概念深化】
(1)、強調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。
(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點對稱。
5、奇函數(shù)與偶函數(shù)圖像的對稱性:
如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數(shù)的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數(shù)是___________。
如果一個函數(shù)是偶函數(shù),則這個函數(shù)的圖像是以 軸為對稱軸的__________。反之,如果一個函數(shù)的圖像是關(guān)于 軸對稱,則這個函數(shù)是___________。
6. 根據(jù)函數(shù)的奇偶性,函數(shù)可以分為____________________________________
題型一:判定函數(shù)的奇偶性。
例1、判斷下列函數(shù)的奇偶性:
(1) (2) (3)
(4) (5)
練習:教材第49頁,練習a第1題
總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?
題型二:利用奇偶性求函數(shù)解析式
例2:若f(x)是定義在r上的奇函數(shù),當x0時,f(x)=x(1-x),求當 時f(x)的解析式。
練習:若f(x)是定義在r上的奇函數(shù),當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。
已知定義在實數(shù)集 上的奇函數(shù) 滿足:當x0時, ,求 的表達式
題型三:利用奇偶性作函數(shù)圖像
例3 研究函數(shù) 的性質(zhì)并作出它的圖像
練習:教材第49練習a第3,4,5題,練習b第1,2題
當堂檢測
1 已知 是定義在r上的奇函數(shù),則( d )
a. b. c. d.
2 如果偶函數(shù) 在區(qū)間 上是減函數(shù),且最大值為7,那么 在區(qū)間 上是( b )
a. 增函數(shù)且最小值為-7 b. 增函數(shù)且最大值為7
c. 減函數(shù)且最小值為-7 d. 減函數(shù)且最大值為7
3 函數(shù) 是定義在區(qū)間 上的偶函數(shù),且 ,則下列各式一定成立的是(c )
a. b. c. d.
4 已知函數(shù) 為奇函數(shù),若 ,則 -1
5 若 是偶函數(shù),則 的單調(diào)增區(qū)間是
6 下列函數(shù)中不是偶函數(shù)的是(d )
a b c d
7 設(shè)f(x)是r上的偶函數(shù),切在 上單調(diào)遞減,則f(-2),f(- ),f(3)的大小關(guān)系是( a )
a b f(- )f(-2) f(3) c f(- )
8 奇函數(shù) 的圖像必經(jīng)過點( c )
a (a,f(-a)) b (-a,f(a)) c (-a,-f(a)) d (a,f( ))
9 已知函數(shù) 為偶函數(shù),其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是( a )
a 0 b 1 c 2 d 4
10 設(shè)f(x)是定義在r上的奇函數(shù),且x0時,f(x)= ,則f(-2)=_-5__
11若f(x)在 上是奇函數(shù),且f(3)_f(-1)
12.解答題
用定義判斷函數(shù) 的奇偶性。
13定義證明函數(shù)的奇偶性
已知函數(shù) 在區(qū)間d上是奇函數(shù),函數(shù) 在區(qū)間d上是偶函數(shù),求證: 是奇函數(shù)
14利用函數(shù)的奇偶性求函數(shù)的解析式:
已知分段函數(shù) 是奇函數(shù),當 時的解析式為 ,求這個函數(shù)在區(qū)間 上的解析表達式。
高一函數(shù)教案篇3
對數(shù)函數(shù)的應用 教案
教學目標 :①掌握對數(shù)函數(shù)的性質(zhì)。
②應用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復
合函數(shù)的定義域、值 域 奇偶性及單調(diào)性。
③ 注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高
解題能力。
教學重點與難點:對數(shù)函數(shù)的性質(zhì)的應用。
教學過程 設(shè)計:
⒈復習提問:對數(shù)函數(shù)的概念及性質(zhì)。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調(diào)性取決于底的大?。寒?
調(diào)遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調(diào)遞
增,所以loga5.1
板書:
解:Ⅰ)當0
∵5.1loga5.9
Ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1
師:請同學們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.51,
log0.50.6
板書:略。
師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函
數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù)
函數(shù)圖象的位置關(guān)系來比大小。
2 函數(shù)的定義域, 值 域及單調(diào)性。
例 2 ⑴求函數(shù)y=的定義域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要
使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,
被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于
零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進去,求
它們共同作用的結(jié)果。)
生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,
再根據(jù)對數(shù)函數(shù)的單調(diào)性求解。
師:請你寫一下這道題的解題過程。
生:
解: x2+2x-3>0 x1
(3x+3)>0 , x>-1
x2+2x-3
不等式的解為:1
例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復合函數(shù)的思想方法。
下面請同學們來解⑴。
生:此函數(shù)可看作是由y=log0.5u, u=x- x2復合而成。
板書:
解:⑴∵u=x- x2>0, ∴0
u=x- x2=-(x-0.5)2+0.25, ∴0
∴y=log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u=x- x2
y=log0.5u
y=log0.5(x- x2)
函數(shù)y=log0.5(x- x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞 增區(qū)間[0.5,1)
注:研究任何函數(shù)的性質(zhì)時,都應該首先保證這個函數(shù)有意義,否則
函數(shù)都不存在,性質(zhì)就無從談起。
師:在⑴的基礎(chǔ)上,我們一起來解⑵。請同學們觀察一下⑴與⑵有??
么區(qū)別?
生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。
師:那么⑵如何來解?
生:只要對a進行分類討論,做法與⑴類似。
板書:略。
⒊小結(jié)
這堂課主要講解如何應用對數(shù)函數(shù)的性質(zhì)解決一些問題,希望能
通過這堂課使同學們對等價轉(zhuǎn)化、分類討論等思想加以應用,提高解題能力。
⒋作業(yè)
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))
⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)
①求它的單調(diào)區(qū)間;②當0
⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)
①求它的定義域;②討論它的奇偶性; ③討論它的單調(diào)性。
⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1),
①求它的定義域;②當x為何值時,函數(shù)值大于1;③討論它的
單調(diào)性。
高一函數(shù)教案篇4
教學目標:
使學生理解函數(shù)的概念,明確決定函數(shù)的三個要素,學會求某些函數(shù)的定義域,掌握判定兩個函數(shù)是否相同的方法;使學生理解靜與動的辯證關(guān)系.
教學重點:
函數(shù)的概念,函數(shù)定義域的求法.
教學難點:
函數(shù)概念的理解.
教學過程:
Ⅰ.課題導入
[師]在初中,我們已經(jīng)學習了函數(shù)的概念,請同學們回憶一下,它是怎樣表述的?
(幾位學生試著表述,之后,教師將學生的回答梳理,再表述或者啟示學生將表述補充完整再條理表述).
設(shè)在一個變化的過程中有兩個變量x和y,如果對于x的每一個值,y都有惟一的值與它對應,那么就說y是x的函數(shù),x叫做自變量.
[師]我們學習了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請同學們思考下面兩個問題:
問題一:y=1(xr)是函數(shù)嗎?
問題二:y=x與y=x2x 是同一個函數(shù)嗎?
(學生思考,很難回答)
[師]顯然,僅用上述函數(shù)概念很難回答這些問題,因此,需要從新的高度來認識函數(shù)概念(板書課題).
Ⅱ.講授新課
[師]下面我們先看兩個非空集合a、b的元素之間的一些對應關(guān)系的例子.
在(1)中,對應關(guān)系是乘2,即對于集合a中的每一個數(shù)n,集合b中都有一個數(shù)2n和它對應.
在(2)中,對應關(guān)系是求平方,即對于集合a中的每一個數(shù)m,集合b中都有一個平方數(shù)m2和它對應.
在(3)中,對應關(guān)系是求倒數(shù),即對于集合a中的每一個數(shù)x,集合b中都有一個數(shù) 1x 和它對應.
請同學們觀察3個對應,它們分別是怎樣形式的對應呢?
[生]一對一、二對一、一對一.
[師]這3個對應的共同特點是什么呢?
[生甲]對于集合a中的任意一個數(shù),按照某種對應關(guān)系,集合b中都有惟一的數(shù)和它對應.
[師]生甲回答的很好,不但找到了3個對應的共同特點,還特別強調(diào)了對應關(guān)系,事實上,一個集合中的數(shù)與另一集合中的數(shù)的對應是按照一定的關(guān)系對應的,這是不能忽略的. 實際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對應關(guān)系.
現(xiàn)在我們把函數(shù)的概念進一步敘述如下:(板書)
設(shè)a、b是非空的數(shù)集,如果按照某個確定的對應關(guān)系f,使對于集合a中的任意一個數(shù)x,在集合b中都有惟一確定的數(shù)f(x)和它對應,那么就稱f︰ab為從集合a到集合b的一個函數(shù).
記作:y=f(x),xa
其中x叫自變量,x的取值范圍a叫做函數(shù)的定義域,與x的值相對應的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xa}叫函數(shù)的值域.
一次函數(shù)f(x)=ax+b(a0)的定義域是r,值域也是r.對于r中的任意一個數(shù)x,在r中都有一個數(shù)f(x)=ax+b(a0)和它對應.
反比例函數(shù)f(x)=kx (k0)的定義域是a={x|x0},值域是b={f(x)|f(x)0},對于a中的任意一個實數(shù)x,在b中都有一個實數(shù)f(x)= kx (k0)和它對應.
二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是r,值域是當a0時b={f(x)|f(x)4ac-b24a };當a0時,b={f(x)|f(x)4ac-b24a },它使得r中的任意一個數(shù)x與b中的數(shù)f(x)=ax2+bx+c(a0)對應.
函數(shù)概念用集合、對應的語言敘述后,我們就很容易回答前面所提出的兩個問題.
y=1(xr)是函數(shù),因為對于實數(shù)集r中的任何一個數(shù)x,按照對應關(guān)系函數(shù)值是1,在r中y都有惟一確定的值1與它對應,所以說y是x的函數(shù).
y=x與y=x2x 不是同一個函數(shù),因為盡管它們的對應關(guān)系一樣,但y=x的定義域是r,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個函數(shù).
[師]理解函數(shù)的定義,我們應該注意些什么呢?
(教師提出問題,啟發(fā)、引導學生思考、討論,并和學生一起歸納、總結(jié))
注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對應.
②符號f:ab表示a到b的一個函數(shù),它有三個要素;定義域、值域、對應關(guān)系,三者缺一不可.
③集合a中數(shù)的任意性,集合b中數(shù)的惟一性.
④f表示對應關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.
⑤f(x)是一個符號,絕對不能理解為f與x的乘積.
[師]在研究函數(shù)時,除用符號f(x)表示函數(shù)外,還常用g(x) 、f(x)、g(x)等符號來表示
Ⅲ.例題分析
[例1]求下列函數(shù)的定義域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函數(shù)的定義域通常由問題的實際背景確定.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域.那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)x的集合.
解:(1)x-20,即x2時,1x-2 有意義
這個函數(shù)的定義域是{x|x2}
(2)3x+20,即x-23 時3x+2 有意義
函數(shù)y=3x+2 的定義域是[-23 ,+)
(3) x+10 x2
這個函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).
注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.
從上例可以看出,當確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時,常有以下幾種情況:
(1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集r;
(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合;
(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號內(nèi)的式子不小于零的實數(shù)的集合;
(4)如果f(x)是由幾個部分的數(shù)學式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實數(shù)的集合(即使每個部分有意義的實數(shù)的集合的交集);
(5)如果f(x)是由實際問題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實際意義的實數(shù)的集合.
例如:一矩形的寬為x m,長是寬的2倍,其面積為y=2x2,此函數(shù)定義域為x0而不是全體實數(shù).
由以上分析可知:函數(shù)的定義域由數(shù)學式子本身的意義和問題的實際意義決定.
[師]自變量x在定義域中任取一個確定的值a時,對應的函數(shù)值用符號f(a)來表示.例如,函數(shù)f(x)=x2+3x+1,當x=2時的函數(shù)值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當自變量x=a時的函數(shù)值.
下面我們來看求函數(shù)式的值應該怎樣進行呢?
[生甲]求函數(shù)式的值,嚴格地說是求函數(shù)式中自變量x為某一確定的值時函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應確定的數(shù)(或字母,或式子)進行計算即可.
[師]回答正確,不過要準確地求出函數(shù)式的值,計算時萬萬不可粗心大意噢!
[生乙]判定兩個函數(shù)是否相同,就看其定義域或?qū)P(guān)系是否完全一致,完全一致時,這兩個函數(shù)就相同;不完全一致時,這兩個函數(shù)就不同.
[師]生乙的回答完整嗎?
[生]完整!(課本上就是如生乙所述那樣寫的).
[師]大家說,判定兩個函數(shù)是否相同的依據(jù)是什么?
[生]函數(shù)的定義.
[師]函數(shù)的定義有三個要素:定義域、值域、對應關(guān)系,我們判定兩個函數(shù)是否相同為什么只看兩個要素:定義域和對應關(guān)系,而不看值域呢?
(學生竊竊私語:是啊,函數(shù)的三個要素不是缺一不可嗎?怎不看值域呢?)
(無人回答)
[師]同學們預習時還是欠仔細,欠思考!我們做事情,看問題都要多問幾個為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對應關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對應關(guān)系,三者就全看了!
(生恍然大悟,我們怎么就沒想到呢?)
[例2]求下列函數(shù)的值域
(1)y=1-2x (xr) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函數(shù)的值域應確定相應的定義域后再根據(jù)函數(shù)的具體形式及運算確定其值域.
對于(1)(2)可用直接法根據(jù)它們的定義域及對應法則得到(1)(2)的值域.
對于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.
解:(1)yr
(2)y{1,0,-1}
(3)畫出y=x2+4x+3(-31)的圖象,如圖所示,
當x[-3,1]時,得y[-1,8]
Ⅳ.課堂練習
課本p24練習17.
Ⅴ.課時小結(jié)
本節(jié)課我們學習了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學習函數(shù)定義應注意的問題及求定義域時的各種情形應該予以重視.(本小結(jié)的內(nèi)容可由學生自己來歸納)
Ⅵ.課后作業(yè)
課本p28,習題1、2. 文 章來
高一函數(shù)教案篇5
教材分析:冪函數(shù)作為一類重要的函數(shù)模型,是學生在系統(tǒng)地學習了指數(shù)函數(shù)、對數(shù)函數(shù)之后研究的又一類基本的初等函數(shù)。本課的教學重點是掌握常見冪函數(shù)的概念和性質(zhì),難點是根據(jù)冪函數(shù)的單調(diào)性比較兩個同指數(shù)的指數(shù)式的大小。 冪函數(shù)模型在生活中是比較常見的,學習時結(jié)合生活中的具體實例來引出常見的冪函數(shù) 。
組織學生畫出他們的圖象,根據(jù)圖象觀察、總結(jié)這幾個常見冪函數(shù)的性質(zhì)。對于冪函數(shù),只需重點掌握 這五個函數(shù)的圖象和性質(zhì)。 學習中學生容易將冪函數(shù)和指數(shù)函數(shù)混淆,因此在引出冪函數(shù)的概念之后,可以組織學生對兩類不同函數(shù)的表達式進行辨析。
學生已經(jīng)有了學習冪函數(shù)和對象函數(shù)的學習經(jīng)歷,這為學習冪函數(shù)做好了方法上的準備。因此,學習過程中,引入冪函數(shù)的概念之后,嘗試放手讓學生自己進行合作探究學習。
教學目標:
??知識和技能
1.了解冪函數(shù)的概念,會畫冪函數(shù) , , 的圖象,并能結(jié)合這幾個冪函數(shù)的圖象,了解冪函數(shù)圖象的變化情況和性質(zhì)。
2.了解幾個常見的冪函數(shù)的性質(zhì)。
??過程與方法 1.通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學生概括抽象和識圖能力。 2.使學生進一步體會數(shù)形結(jié)合的思想。
??情感、態(tài)度與價值觀 1.通過生活實例引出冪函數(shù)的概念,使學生體會到生活中處處有數(shù)學,激發(fā)學生的學習興趣。 2.利用計算機等工具,了解冪函數(shù)和指數(shù)函數(shù)的本質(zhì)差別,使學生充分認識到現(xiàn)代技術(shù)在人們認識世界的過程中的作用,從而激發(fā)學生的學習欲望。 教學重點 常見冪函數(shù)的概念和性質(zhì) 教學難點 冪函數(shù)的單調(diào)性與冪指數(shù)的關(guān)系
教學過程 一、創(chuàng)設(shè)情景,引入新課 問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關(guān)系? (總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問題2:如果正方形的邊長為a,那么正方形的面積 ,這里s是a的函數(shù)。 問題3:如果正方體的`邊長為a,那么正方體的體積 ,這里v是a的函數(shù)。 問題4:如果正方形場地面積為s,那么正方形的邊長 ,這里a是s的函數(shù) 問題5:如果某人 s內(nèi)騎車行進了 km,那么他騎車的速度 ,這里v是t的函數(shù)。 以上是我們生活中經(jīng)常遇到的幾個數(shù)學模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量) 這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)
二、新課講解 (一)冪函數(shù)的概念 如果設(shè)變量為 ,函數(shù)值為 ,你能根據(jù)以上的生活實例得到怎樣的一些具體的函數(shù)式? 這里所得到的函數(shù)是冪函數(shù)的幾個典型代表,你能根據(jù)此給出冪函數(shù)的一般式嗎? 這就是冪函數(shù)的一般式,你能根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)的定義,給出冪函數(shù)的定義嗎? 冪函數(shù)的定義:一般地,我們把形如 的函數(shù)稱為冪函數(shù)(power function),其中 是自變量, 是常數(shù)。
?探究一】冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學生回顧指數(shù)函數(shù)的概念) 結(jié)論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別: 對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù) 對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù) 試一試:判斷下列函數(shù)那些是冪函數(shù) (1) (2) (3) (4) 我們已經(jīng)對冪函數(shù)的概念有了比較深刻的認識,根據(jù)我們前面學習指數(shù)函數(shù)、對數(shù)函數(shù)的學習經(jīng)歷,你認為我們下面應該研究什么呢?(研究圖象和性質(zhì)) (二)幾個常見冪函數(shù)的圖象和性質(zhì) 在初中我們已經(jīng)學習了冪函數(shù) 的圖象和性質(zhì),請同學們在同一坐標系中畫出它們的圖象。 根據(jù)你的學習經(jīng)歷,你能在同一坐標系內(nèi)畫出函數(shù) 的圖象嗎?
?探究二】觀察函數(shù) 的圖象,將你發(fā)現(xiàn)的結(jié)論寫在下表內(nèi)。 定義域 值域 奇偶性 單調(diào)性 定點 圖象范圍
?探究三】根據(jù)上表的內(nèi)容并結(jié)合圖象,試總結(jié)函數(shù): 的共同性質(zhì)。 (1) 函數(shù) 的圖象都過點 (2) 函數(shù) 在 上單調(diào)遞增; 歸納:冪函數(shù) 圖象的基本特征是,當 是,圖象過點 ,且在第一象限隨 的增大而上升,函數(shù)在區(qū)間 上是單調(diào)增函數(shù)。(演示幾何畫板制作課件:冪函數(shù).asp) 請同學們模仿我們探究冪函數(shù) 圖象的基本特征 的情況探討 時冪函數(shù) 圖象的基本特征。(利用drawtools軟件作圖研究) 歸納: 時冪函數(shù) 圖象的基本特征:過點 ,且在第一象限隨 的增大而下降,函數(shù)在區(qū)間 上是單調(diào)減函數(shù),且向右無限接近x軸,向上無限接近y軸。
(三)例題剖析 【例1】求下列冪函數(shù)的定義域,并指出其奇偶性、單調(diào)性。 (1) (2) (3) 分析:根據(jù)你的學習經(jīng)歷,你覺得求一個函數(shù)的定義域應該從哪些方面來考慮? 方法引導:解決有關(guān)函數(shù)求定義域的問題時,可以從以下幾個方面來考慮,列出相應不等式或不等式組,解不等式或不等式組即可得到所求函數(shù)的定義域。 (1) 若函數(shù)解析式中含有分母,分母不能為0; (2) 若函數(shù)解析式中含有根號,要注意偶次根號下非負; (3) 0的0次冪沒有意義; (4) 若函數(shù)解析式中含有對數(shù)式,要注意對數(shù)的真數(shù)大于0; 求函數(shù)的定義域的本質(zhì)是解不等式或不等式組。 結(jié)論:在函數(shù)解析式中含有分數(shù)指數(shù)時,可以把它們的解析式化成根式,根據(jù)“偶次根號下非負”這一條件來求出對應函數(shù)的定義域;當函數(shù)解析式的冪指數(shù)為負數(shù)時,根據(jù)負指數(shù)冪的意義將其轉(zhuǎn)化為分式形式,根據(jù)分式的分母不能為0這一限制條件來求出對應函數(shù)的定義域。 歸納分析如果判斷冪函數(shù)的單調(diào)性(第一象限利用性質(zhì),其余象限利用函數(shù)奇偶性與單調(diào)性的關(guān)系)
?例2】比較下列各組數(shù)中兩個值的大小(在橫線上填上“”) (1) ________ (2) ________ (3) __________ (4) ____________ 分析:利用考察其相對應的冪函數(shù)和指數(shù)函數(shù)來比較大小 三、課堂小結(jié) 1、 冪函數(shù)的概念及其指數(shù)函數(shù)表達式的區(qū)別 2、 常見冪函數(shù)的圖象和冪函數(shù)的性質(zhì)。 四、布置作業(yè) ㈠課本第73頁習題2.4第1、2、3題 ㈡思考題:根據(jù)下列條件對于冪函數(shù) 的有關(guān)性質(zhì)的敘述,分別指出冪函數(shù) 的圖象具有下列特點之一時的 的值,其中 (1)圖象過原點,且隨 的增大而上升; (2)圖象不過原點,不與坐標軸相交,且隨 的增大而下降; (3)圖象關(guān)于 軸對稱,且與坐標軸相交; (4)圖象關(guān)于 軸對稱,但不與坐標軸相交; (5)圖象關(guān)于原點對稱,且過原點; (6)圖象關(guān)于原點對稱,但不過原點;
檢測與反饋 姓名
1、下列函數(shù)中,是冪函數(shù)的是( ) a、 b、 c、 d、
2、下列結(jié)論正確的是( ) a、冪函數(shù)的圖象一定過原點 b、當 時,冪函數(shù) 是減函數(shù) c、當 時,冪函數(shù) 是增函數(shù) d、函數(shù) 既是二次函數(shù),也是冪函數(shù)
3、下列函數(shù)中,在 是增函數(shù)的是( ) a、 b、 c、 d、
4、函數(shù) 的圖象大致是( )
5、已知某冪函數(shù)的圖象經(jīng)過點 ,則這個函數(shù)的解析式為_______________________ 6、寫出下列函數(shù)的定義域,并指出它們的單調(diào)性: (1) (2) (3) 同伴評 (優(yōu)、良、中、須努力) 自 評 (優(yōu)、良、中、須努力) 教師評 (優(yōu)、良、中、須努力)
高一函數(shù)教案篇6
一、教學目標
(1)了解含有“或”、“且”、“非”復合命題的概念及其構(gòu)成形式;
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復合命題;
(4)能識別復合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
(5)會用真值表判斷相應的復合命題的真假;
(6)在知識學習的基礎(chǔ)上,培養(yǎng)學生簡單推理的技能.
二、教學重點難點:
重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.
三、教學過程
1.新課導入
在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.數(shù)學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調(diào)邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關(guān)知識.)
學生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學議論結(jié)果,答案是肯定的.)
教師提問:什么是命題?
(學生進行回憶、思考.)
概念總結(jié):對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學的回答,并作板書.)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
(教師利用投影片,和學生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎(chǔ)上,介紹簡易邏輯的知識.
2.講授新課
大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?
(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.
對“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
對“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.
對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題 對應于集合 ,則命題非 就對應著集合 在全集 中的補集 .
命題可分為簡單命題和復合命題.
不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復合命題.
(4)命題的表示:用 , , , ,……來表示.
(教師根據(jù)學生回答的情況作補充和強調(diào),特別是對復合命題的概念作出分析和展開.)
我們接觸的復合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.
給出一個含有“或”、“且”、“非”的復合命題,應能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復合命題.
對于給出“若 則 ”形式的復合命題,應能找到條件 和結(jié)論 .
在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡單命題,哪些是復合命題.如果是復合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.
(1) ;
(2)0.5非整數(shù);
(3)內(nèi)錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若 ,則 .
(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充.)
例3 寫出下表中各給定語的否定語(用課件打出來).
若給定語為
等于
大于
是
都是
至多有一個
至少有一個
至多有個
其否定語分別為
分析:“等于”的否定語是“不等于”;
“大于”的否定語是“小于或者等于”;
“是”的否定語是“不是”;
“都是”的否定語是“不都是”;
“至多有一個”的否定語是“至少有兩個”;
“至少有一個”的否定語是“一個都沒有”;
“至多有 個”的否定語是“至少有 個”.
(如果時間寬裕,可讓學生討論后得出結(jié)論.)
置疑:“或”、“且”的否定是什么?(視學生的情況、課堂時間作適當?shù)谋嫖雠c展開.)
4.課堂練習:第26頁練習1,2.
5.課外作業(yè):第29頁習題1.6 1,2.