教案在編寫的時候,大家務(wù)必要注意講授內(nèi)容要點,所有的老師必須要了解寫教案的意義,這是十分重要的,以下是范文社小編精心為您推薦的法算式教案6篇,供大家參考。
法算式教案篇1
一、創(chuàng)設(shè)情境,展示問題。
問題1:
世界最大的動物是藍鯨,一只藍鯨重124噸,比一頭大象體重的25倍少一噸,這頭大象重幾噸? 問題2: 章前圖中的汽車勻速行駛途經(jīng)王家莊、青山、秀水三地的時間如表所示,翠湖在青山、秀水之間,距青山50千米,距秀水70千米,王家莊到翠湖有多遠? 地名 時間 王家莊 10:00 青山 13:00 秀水 15:00 教師展示問題,要求用算術(shù)解法,讓學(xué)生充分發(fā)表意見。
算術(shù)方法:(124+1)÷25=5(噸)方程方法:可設(shè)大象重為`噸,則124=25`—1 學(xué)生獨立思考,小組交流,代表發(fā)言,解釋說明。
問題1的算術(shù)解法:
(50+70)÷2=60(千米/時) 605—70=230(千米) 問題1用算術(shù)法較容易解決,但問題2卻不容易解決,這樣產(chǎn)生矛盾沖突,使學(xué)生認識到進一步學(xué)習(xí)的必要性。 示意圖有助于分析問題。
二、尋找關(guān)系,列出方程。
1、對于問題1,如果設(shè)王家莊到翠湖的路程是`千米,則: 路程 時間 速度 王家莊—青山 王家莊—秀水 根據(jù)汽車勻速前進,可知各路段汽車速度相等,列方程。
2、比一比:列算式與列方程有什么不同?哪一個更簡便?
3、想一想:對于問題1,你還能列出其他方程嗎?如果能,你根據(jù)的是哪個相等關(guān)系?你認為列方程的關(guān)鍵是什么? 結(jié)合圖形,引導(dǎo)學(xué)生分析各路段的路程、速度、時間之間的關(guān)系,填寫表格。
學(xué)生思考回答:
1、王家莊—青山(`—50)千米,王家莊—秀水(`+70)千米。
2、汽車以每小時(`—50)÷3千米的速度從王家莊到青山;以每小時(`+70)÷5千米的速度從王家莊到秀水。 讓學(xué)生體會:用算術(shù)方法解題時,列出的算式只能用已知數(shù),而列方程解題時,方程中既含有已知數(shù),又含有用字母表示的未知數(shù)。
三、定義方程,建立模型。
1、定義:(板書)含有未知數(shù)的等式叫做方程。
練習(xí)一:判斷下列式子是不是方程,是的打“adic;”,不是的打“` ”。
(1)1+2=3 ( ) (2) 1+2`=4 ( ) (3) `+y=2 ( ) (1) `+1—3 ( ) (2) `2—1=0 ( )
練習(xí)二:根據(jù)下列問題,設(shè)未知數(shù)并列出方程。
(1)用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少?解:設(shè)正方形的邊長為` cm。那么依題意得到方程:_________。
(2)一臺計算機已使用1700小時,預(yù)計每月再使用150小時,經(jīng)過多少月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時?解:經(jīng)過`月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時,那么依題意得到方程:_________。
(3)某校女生占全體學(xué)生的52%,比男生多80人,這個學(xué)校有多少學(xué)生?解:設(shè)這個學(xué)校的學(xué)生為`,那么女生數(shù)為 ,男生數(shù)為 。 由此依題意得到方程:________________。 [議一議]:上面的四個方程有什么共同點? 2、定義:只含有一個未知數(shù)(元`),未知數(shù)的指數(shù)是1次,這樣的方程叫做一元一次方程。
3、方程的解:再看剛才列出的方程:4`=24,你能觀察出當(dāng)`=?時,4`的值正好等于24嗎。學(xué)生回答后總結(jié)方程的解和解方程的概念。
4、歸納分析實際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系 列出方程,是用數(shù)學(xué)解決實際問題的一種方法。
(學(xué)生舉例并完成練習(xí)一) 師生合作,根據(jù)數(shù)量關(guān)系列出方程。
教師結(jié)合練習(xí)給出方程、一元一次方程的定義。
(我國古代稱未知數(shù)為元,只含有一個未知數(shù)的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右兩邊相等的未知數(shù)的值就是這個方程的解。 教師引導(dǎo)學(xué)生對上面的分析過程進行思考,將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的一般過程。
學(xué)生舉出方程的例子。
(學(xué)生獨立思考、互相討論,先分析出等量關(guān)系,再根據(jù)所設(shè)未知數(shù)列出方程) 判斷哪些是一元一次方程。 學(xué)生單獨計算,并填表。 學(xué)生得出解決實際問題的模型。
四、訓(xùn)練鞏固,課堂小結(jié)。
1、根據(jù)下列問題,設(shè)未數(shù)列方程,并指出是不是一元一次方程。
(1)環(huán)形跑道一周長400m,沿跑道跑多少周,可以跑3000m?
(2)甲種鉛筆每枝0。3元,乙種鉛筆每枝0。6元,用9元錢買了兩種鉛筆共20枝,兩種鉛筆各買了多少枝?
(3)一個梯形的下底比上底多2㎝,高是5㎝,面積是40㎝2,求上底。
2、小結(jié)。
本節(jié)課你學(xué)到了哪些知識?哪些方法?
五、布置作業(yè)。
a、必做 82頁,第1、2、3、題;
b、 拓展阿凡提經(jīng)過了三個城市,第一個城市向他征收的稅是他所有錢財?shù)囊话胗秩种唬诙€城市向他征收的稅是他剩余錢財?shù)囊话胗秩种?,到第三個城市里,又向他征收他經(jīng)過兩次交稅后所剩余錢財?shù)囊话胗秩种?,?dāng)他回到家的時候,他剩下了11個金幣,問阿凡提原來有多少個金幣?
c、課堂評價。
1、本節(jié)課的主要知識點是:
2、你對列方程這節(jié)課的感受是:3、這節(jié)課我的困惑是:
(1) 設(shè)跑`周。 列方程400`=3000
(2)設(shè)甲種鉛筆買了`枝,乙種鉛筆買了(20—`)枝。列方程 0。3`+0。6(20—`)=9 (3)設(shè)上底為` cm,下底為(`+2)cm。列方程 學(xué)生自己探索,獨立完成,集體訂正。 學(xué)生課后完成,并寫學(xué)習(xí)心得。
法算式教案篇2
一、教材分析
(一)教材的地位和作用
方程是初等數(shù)學(xué)的基本知識,也是進一步學(xué)習(xí)一元一次方程,二元一次方程組,一元一次不等式及一元二次方程的基礎(chǔ).方程在實際問題中的應(yīng)用,是中學(xué)階段應(yīng)用數(shù)學(xué)知識解決實際問題的重要開端,也是增強學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)意識的重要題材.本節(jié)教材主要起著承前啟后的作用,可以說是小學(xué)與中學(xué)內(nèi)容上的銜接點,方法上的分水嶺.
(二)教學(xué)內(nèi)容
“從算式到方程”新教材與原教材的顯著區(qū)別:方程這一部分內(nèi)容不是按照由定義到解法最后講應(yīng)用的純數(shù)學(xué)體系編排,而是首先從實際問題出發(fā),通過比較算術(shù)方法與方程求解的區(qū)別,體會方程的優(yōu)越性,讓學(xué)生認識到從算式到方程是數(shù)學(xué)的一大進步.然后再通過具體實際問題所列方程,介紹方程等概念.新教材的編寫更加體現(xiàn)了數(shù)學(xué)的應(yīng)用價值.
(三)教學(xué)重點難點
由于學(xué)生在小學(xué)階段已習(xí)慣用算術(shù)方法解決實際問題,對列方程不太熟練,為了防止學(xué)生仍停留在列算式解題的低層上,所以本節(jié)重點確定為:讓學(xué)生在討論問題、解決問題的過程中,比較列算式與列方程在分析數(shù)量關(guān)系上的區(qū)別及列方程時相等關(guān)系的建立.而本節(jié)中學(xué)生可能感到困難的仍是實際問題相等關(guān)系的建立.
二、目標分析
依據(jù)課程標準的要求,確定以下目標:
(一)知識與技能目標
1.了解方程等基本概念.
2.會根據(jù)具體問題中的數(shù)量關(guān)系列出方程.
(二)過程與方法目標
經(jīng)歷從具體問題中的數(shù)量相等關(guān)系列出方程的過程,體會并認識方程是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型,滲透數(shù)學(xué)建模的思想.
(三)情感目標
讓學(xué)生進一步認識到方程與現(xiàn)實世界的密切關(guān)系,感受數(shù)學(xué)的價值.培養(yǎng)學(xué)生獲取信息,分析問題,處理問題的能力。
三、教法與學(xué)法分析
根據(jù)本節(jié)內(nèi)容與現(xiàn)實生活聯(lián)系較緊密的特點,教學(xué)中選取學(xué)生熟悉的、感興趣的背景材料,充分調(diào)動學(xué)生的學(xué)習(xí)熱情.并恰當(dāng)設(shè)計各種問題,讓學(xué)生在教師的引導(dǎo)下,通過小組討論、相互交流、動手操作、自主探索等活動,獲得知識,積累經(jīng)驗,體驗成功,積極推行自主學(xué)習(xí)、合作學(xué)習(xí)、探究學(xué)習(xí)等新的學(xué)習(xí)方式,努力完成教師和學(xué)生在教與學(xué)活動中角色的轉(zhuǎn)變.
四、教學(xué)過程分析
教學(xué)目標 ①進一步理解用等式的性質(zhì)解簡簡單的(兩次運用等式的性質(zhì))一元一次方程
②初步具有解方程中的化歸意識;
③培養(yǎng)言必有據(jù)的思維能力和良好的思維品質(zhì).
教學(xué)重點 用等式的性質(zhì)解方程。
知識難點 需要兩次運用等式的性質(zhì),并且有一定的思維順序。
教學(xué)過程(師生活動) 設(shè)計理念
復(fù)習(xí)引入 解下列方程:(1)`+7=1.2; (2)
在學(xué)生解答后的講評中圍繞兩個問題:
① 每一步的依據(jù)分別是什么?
② 求方程的解就是把方程化成什么形式?
這節(jié)課繼續(xù)學(xué)習(xí)用等式的性質(zhì)解一元一次方程。 由于這一課時也是學(xué)習(xí)用等式的性質(zhì)解方程,所以通過復(fù)習(xí)來引入比較自然。
探究新知 對于簡單的方程,我們通過觀察就能選擇用等式的哪一條性質(zhì)來解,下列方程你也能馬上做出選擇嗎?
例1 利用等式的性質(zhì)解方程:
0.5`-`=3.4 (2)
先讓學(xué)生對第(1)題進行嘗試,然后教師進行引導(dǎo):
① 要把方程0.5`-`=3.4轉(zhuǎn)化為`=a的形式,必須去掉方程左邊的0.5,怎么去?
② 要把方程-`=2.9轉(zhuǎn)化為`=a的形式,必須去掉`前面的“-”號,怎么去?
然后給出解答:
解:兩邊減0.5,得0.5-`-0.5=3.4-0.5
化簡,得
-`=-2.9,、
兩邊同乘-1,得l
`=-2.9
小結(jié):(1)這個方程的解答中兩次運用了等式的性質(zhì)(2)解方程的目標是把方程最終化為`=a的形式,在運用性質(zhì)進行變形時,始終要朝著這個目標去轉(zhuǎn)化.
你能用這種方法解第(2)題嗎?
在學(xué)生解答后再點評.
解后反思:
①第(2)題能否先在方程的兩邊同乘“一3”?
②比較這兩種方法,你認為哪一種方法更好?為什么?
允許學(xué)生在討論后再回答.
例2(補充)服裝廠用355米布做成人服裝和兒童服裝,成人服裝每套平均用布3.5米,兒童服裝每套平均用布1.5米.現(xiàn)已做了80套成人服裝,用余下的布還可以做幾套兒童服裝?
在學(xué)生弄清題意后,教師再作分析:如果設(shè)余下的布可以做`套兒童服裝,那么這`套服裝就需要布1.5`米,根據(jù)題意,你能列出方程嗎?
解:設(shè)余下的布可以做`套兒童服裝,那么這`套服裝就需要布1.5米,根據(jù)題意,得
80`×3.5+1.5`=355.
化簡,得
280+1.5`=355,
兩邊減280,得
280+1.5`-280=355-280,
化簡,得
1.5`=75,
兩邊同除以1.5,得`=50.
答:用余下的布還可以做50套兒童服裝.
解后反思:對于許多實際間題,我們可以通過設(shè)未知數(shù),列方程,解方程,以求出問題的解.也就是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.
問題:我們?nèi)绾尾拍芘袆e求出的答案50是否正確?
在學(xué)生代入驗算后,教師引導(dǎo)學(xué)生歸納出方法:檢驗一個數(shù)值是不是某個方程的解,可以把這個數(shù)值代入方程,看方程左右兩邊是否相等,例如:把`=50代入方程80×3.5+1.5`=355的左邊,得80×3.5+1.5×50=280+75=355
方程的左右兩邊相等,所以`=50是方程的解。
你能檢驗一下`=-27是不是方程 的解嗎? 不同層次的學(xué)生經(jīng)過嘗試就會有不同的收獲:一部分學(xué)生能獨立解決,一部分學(xué)生雖不能解答,但經(jīng)過老師的引導(dǎo)后,也能受到啟發(fā),這比純粹的老師講解更能激發(fā)學(xué)生的積級性。
這里補充一個例題的目的一是解方程的應(yīng)用,二是前兩節(jié)課中已學(xué)到了方程,在這里可以進一步應(yīng)用,三是使后面的“檢驗”更加自然。
解題的格式現(xiàn)在不一定要學(xué)生嚴格掌握。
課堂練習(xí) ① 教科書第73頁練習(xí) 第(3)(4)題。
② 小聰帶了18元錢到文具店買學(xué)習(xí)用品,他買了5支單價為1.2元的圓珠筆,剩下的錢剛好可以買8本筆記本,問筆記本的單價是多少?(用列方程的方法求解)
建議:采用小組競賽的方法進行評議
小結(jié)與作業(yè)
課堂小結(jié) 建議:①先讓學(xué)生進行歸納、補充。主要圍繞以下幾個方面:
(1) 這節(jié)課學(xué)習(xí)的內(nèi)容。
(2) 我有哪些收獲?
(3) 我應(yīng)該注意什么問題?
②教師對學(xué)生的學(xué)習(xí)情況進行評價。
③思考題 用等式的性質(zhì)求`:-2`=-5`+7 引發(fā)競爭意識,提高自我評價和自我表現(xiàn)的機會,以達到激發(fā)興趣,鞏固知識的目的。評價包括對學(xué)生個人、小組,對學(xué)生的學(xué)習(xí)態(tài)度、情感投入及學(xué)習(xí)的效果方面等。
本課作業(yè) ① 必做題:教科書第73頁第4(1)、(2)、(4)題;補充:用等式的性質(zhì)解方程:①3+4`=17;②4- =3
② 選做題:教科書第73頁第4(3)題,第74頁第10題。
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)
1、力求體現(xiàn)新課程理念:數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認知發(fā)展水平和已有的知
識經(jīng)驗基礎(chǔ)之上。教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會……學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者.本設(shè)計從新課的引人、例題的處理(包括解題后的反思)、反饋練習(xí)及小結(jié)提高等各環(huán)節(jié)都力求充分體現(xiàn)這一點.
2、在傳統(tǒng)的課堂教學(xué)中,教師往往通過大量地講解,把學(xué)生變成任教師“灌輸”的“容
器”,學(xué)生只能接受、輸入并存儲知識,而教師進行的也只不過是機械地復(fù)制文化知識.新
課程的一個重要方面就是要改變學(xué)生的學(xué)習(xí)方式,將被動的、接受式的學(xué)習(xí)方式,轉(zhuǎn)變?yōu)閯邮謱嵺`、自主探索與合作交流等方式.本設(shè)計在這方面也有較好的體現(xiàn).
3、為突出重點,分散難點,使學(xué)生能有較多機會接觸列方程,本章把對實際問題的討論作為貫穿于全章前后的一條主線.對一元一次方程解法的討論始終是結(jié)合解決實際問題進行的,即先列出方程,然后討論如何解方程,這是本章的又一特點.本設(shè)計充分體現(xiàn)了這一特點.
法算式教案篇3
第一課時
平面圖形的認識
教學(xué)目標:通過復(fù)習(xí)使同學(xué)進一步理解角、垂直與平行、三角形和四邊形的概念,掌握它們的特征和性質(zhì),以和各圖形的聯(lián)系。squo;
教學(xué)過程:
直線、射線、線段。
提問:1)分別說一說什么叫直線、射線、線段?
直線、射線和線段有什么區(qū)別?
完成123頁上面的“做一做”。(同學(xué)筆做)
角
提問:1)什么叫做角?
2)角的大小與什么有關(guān)?
整理:把表中的空格填寫完整。
完成123頁下面“做一做”的1題、2題。
銳角
直角
鈍角
平角
周角
大于0°
小于90°
垂直與平行
提問:
1)在同一平面內(nèi),兩條直線的相互位置有哪幾種情況?
2)什么樣的兩條直線叫做互相垂直?
什么樣的兩條直線叫做互相平行?
回答:下面幾組直線中,哪組的兩條直線互相垂直?哪組的兩條直線互相平
完成教材124頁的“做一做”
三角形。
提問:
1)什么叫做三角形?
2)在下面的三角形中,頂點a的對邊是指哪一條邊?
先筆做:以頂點a的對邊為底,畫出三角形的高,并標出底和高。(前頁一幅圖)
在下面的表中填寫三角形的名稱和各自的特征。
名稱
圖形
特征
回答:銳角三角形、直角三角形、鈍角三角形的聯(lián)系與區(qū)別。
四邊形
提問:什么叫四邊形?
回答:看圖說出下面各圖的特點,再說一說圖中各字母表示什么
想一想:為什么說長方形、正方形都是特殊的平行四邊形?為什么說正方形是特殊的長方形?
完成125頁“做一做”中的1、2題。
法算式教案篇4
教學(xué)目標和要求:
1.理解同類項的概念,在具體情景中,認識同類項。
2.通過小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過程,培養(yǎng)學(xué)生自主探索知識和合作交流的能力。
3.初步體會數(shù)學(xué)與人類生活的密切聯(lián)系。
教學(xué)重點和難點:
重點:理解同類項的概念。
難點:根據(jù)同類項的概念在多項式中找同類項。
教學(xué)方法:
分層次教學(xué),講授、練習(xí)相結(jié)合。
教學(xué)過程:
一、復(fù)習(xí)引入:
1、創(chuàng)設(shè)問題情境
⑴5個人+8個人=
⑵5只羊+8只羊=
⑶5個人+8只羊=
(數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實際、學(xué)習(xí)實際,這是新課程標準所賦予的任務(wù)。學(xué)生嘗試按種類、顏色等多種方法進行分類,一方面可提供學(xué)生主動參與的機會,把學(xué)生的注意力和思維活動調(diào)節(jié)到積極狀態(tài);另一方面可培養(yǎng)學(xué)生思維的靈活性,同時體現(xiàn)分類的思想方法。)
2、觀察下列各單項式,把你認為相同類型的式子歸為一類。
8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2。
由學(xué)生小組討論后,按不同標準進行多種分類,教師巡視后把不同的分類方法投影顯示。
要求學(xué)生觀察歸為一類的式子,思考它們有什么共同的特征?
請學(xué)生說出各自的分類標準,并且肯定每一位學(xué)生按不同標準進行的分類。
(充分讓學(xué)生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學(xué)習(xí)和合作交流,可極大的激發(fā)學(xué)生學(xué)習(xí)的積極性和主動性,滿足學(xué)生的表現(xiàn)欲和探究欲,使學(xué)生學(xué)得輕松愉快,充分體現(xiàn)課堂教學(xué)的開放性。)
二、講授新課:
1.同類項的定義:
我們常常把具有相同特征的事物歸為一類。8x2y與-x2y可以歸為一類,2xy2與-可以歸為一類,-mn2、7mn2與0.4mn2可以歸為一類,5a與9a可以歸為一類,還有、0與也可以歸為一類。8x2y與-x2y只有系數(shù)不同,各自所含的字母都是x、y,并且x的指數(shù)都是2,y的指數(shù)都是1;同樣地,2xy2與-也只有系數(shù)不同,各自所含的字母都是x、y,并且x的指數(shù)都是1,y的指數(shù)都是2。
像這樣,所含字母相同,并且相同字母的指數(shù)也分別相等的項叫做同類項(similar terms)。另外,所有的常數(shù)項都是同類項。比如,前面提到的、0與也是同類項。
通過特征的講述,選擇所含字母相同,并且相同字母的指數(shù)也分別相等的項作為研究對象,并稱它們?yōu)橥愴棥?板書課題:同類項。)
(教師為了讓學(xué)生理解同類項概念,可設(shè)問同類項必須滿足什么條件,讓學(xué)生歸納總結(jié)。)
板書由學(xué)生歸納總結(jié)得出的同類項概念以及所有的常數(shù)項都是同類項。
2.例題:
例1:判斷下列說法是否正確,正確地在括號內(nèi)打“adic;”,錯誤的打“×”。
(1)3x與3mx是同類項。 ( ) (2)2ab與-5ab是同類項。 ( )
(3)3x2y與-yx2是同類項。 ( ) (4)5ab2與-2ab2c是同類項。 ( )
(5)23與32是同類項。 ( )
(這組判斷題能使學(xué)生清楚地理解同類項的概念,其中第(3)題滿足同類項的條件,只要運用乘法交換律即可;第(5)題兩個都是常數(shù)項屬于同類項。一部分學(xué)生可能會單看指數(shù)不同,誤認為不是同類項。)
例2:游戲:
規(guī)則:一學(xué)生說出一個單項式后,指定一位同學(xué)回答它的兩個同類項。[來源:學(xué)|科|網(wǎng)z|x|x|k]
要求出題同學(xué)盡可能使自己的題目與眾不同。
可請回答正確的同學(xué)向大家介紹寫一個單項式同類項的經(jīng)驗,從而揭示同類項的本質(zhì)特征,透徹理解同類項的概念。
(學(xué)生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的程式化做法,并由編題學(xué)生指定某位同學(xué)回答,可使課堂氣氛活躍,學(xué)生透徹理解知識,這種形式適合初中生的年齡特征。學(xué)生通過一定的嘗試后,能得出只要改變單項式的系數(shù),即可得到其同類項,實際是抓住了同類項概念中的兩個“相同”,從而深刻揭示了概念的內(nèi)涵。)
例3:指出下列多項式中的同類項:
(1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2。
解:(1)3x與-2x是同類項,-2y與3y是同類項,1與-5是同類項。
(2)3x2y與-yx2是同類項,-2xy2與xy2是同類項。
例4:k取何值時,3xky與-x2y是同類項?
解:要使3xky與-x2y是同類項,這兩項中x的次數(shù)必須相等,即 k=2。所以當(dāng)k=2時,3xky與-x2y是同類項。
例5:若把(s+t)、(s-t)分別看作一個整體,指出下面式子中的同類項。
(1)(s+t)-(s-t)-(s+t)+(s-t);
(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。
解:略。
(組織學(xué)生口頭回答上面三個例題,例3多項式中的同類項可由教師標出不同的下劃線,并運用投影儀打出書面解答,為合并同類項作準備。例4讓學(xué)生明確同類項中相同字母的指數(shù)也相同。例5必須把(s-t)、(s+t)分別看作一個整體。)
(通過變式訓(xùn)練,可進一步明晰“同類項”的意義,在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、提高識別能力。)
6.五分鐘測試:
1、請寫出2ab2c3的一個同類項.你能寫出多少個?它本身是自己的同類項嗎?
(學(xué)生先在課本上解答,再回答,若有錯誤請其他同學(xué)及時糾正。)
三、課堂小結(jié):[
①理解同類項的概念,會在多項式中找出同類項,會寫出一個單項式的同類項,會判斷同類項。
②這堂課運用到分類思想和整體思想等數(shù)學(xué)思想方法。
③學(xué)習(xí)同類項的用途是為了簡化多項式,為下一課的合并同類項打下基礎(chǔ)。
(課堂小結(jié)不僅僅是知識點的羅列,應(yīng)使知識條理化、系統(tǒng)化,應(yīng)上升到數(shù)學(xué)思想方法的總結(jié)與運用.采用學(xué)生相互補充完善,教師適時點撥的課堂小結(jié)方式,可訓(xùn)練學(xué)生的歸納能力和表達能力,提高學(xué)生學(xué)習(xí)的積極性和主動性。)
四、課堂作業(yè):
若2amb2m+3n與a2n-3b8的和仍是一個單項式,則m與 n的值分別是______。
板書設(shè)計:
教學(xué)后記:
建立在學(xué)生的認知發(fā)展水平上,從學(xué)生已有的生活經(jīng)驗出發(fā),通過小組討論,把一些實物進行分類,從而引出同類項這個概念,并通過練習(xí)、游戲、合作交流等學(xué)習(xí)活動讓學(xué)生更清楚地認識同類項。在整堂課的教學(xué)活動中充分體現(xiàn)學(xué)生的主體性,向?qū)W生提供充分參與數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能,培養(yǎng)學(xué)生動手、動口、動腦的能力和學(xué)生的合作交流能力。
法算式教案篇5
1.能根據(jù)題意用字母表示未知數(shù),然后分析出等量關(guān)系,再根據(jù)等量關(guān)系列 出方程.
2.理解方程、一元一次方程的定義及解的概念.
3.掌握檢驗?zāi)硞€數(shù)值是不是方程的解的方法.
閱讀教材p78~80,思考下列問題.
什么是方程、一元一次方程及它們的 解?怎樣列方程?
知識探究
1.含有未知數(shù)的等式叫方程.只含有一個未知數(shù),未知數(shù)的次數(shù)是1,這樣的方程叫做一元一次方程.
2.解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解.
自學(xué)反饋
根據(jù)下面實際問題中的數(shù)量關(guān)系,設(shè)未知數(shù)列出方程:
1.用一根長為2 4 cm的鐵絲圍成一個正方形,正方形的邊長為多少?
解:設(shè)正方形的邊長為` cm,列方程得:4`=24.
2.某校女生人數(shù)占全體學(xué)生數(shù)的52%,比男生多80人,這個學(xué)校有多少學(xué)生?
解:設(shè)這個學(xué)校的學(xué)生數(shù)為`,則女生數(shù)為52%`,男生數(shù)為52%`-80,依 題意得方程:52%`+52%`-80=`.
3.練習(xí)本每本0.8元,小明拿了10元錢買了若干本,還找回4.4元.問:小明買了幾本練習(xí)本?
解:設(shè)小明買了`本,列方程得:0.8`=10-4.4.
4.長方形的周長為24 cm,長比寬多2 cm,求長和寬分別是多少.
解:設(shè)長為`cm,則寬為(`-2)cm,依題意得方程:2(`+`-2)=24.
先設(shè)未知數(shù),再找相等關(guān)系,列方程.[來源:學(xué)+科+網(wǎng)z+`+`+k]
活動1小組討論
例1判斷下列是不是一元一次方程,是打“adic;”,不是打“×”.
①`+3=4;(adic;)
②-2`+3=1;(adic;)
③2`+13=6-y;(×)
④1`=6;(×)
⑤2`-8>-10;(×)
⑥3+4`=7`.(adic;)
例2檢驗2和-3是否為方程`-52-1=`-2的解.
解:-3是,2不是.
帶入方程中左右兩邊相等的值就是方程的解.
例3設(shè)未知數(shù)列出方程:
(1)用一根長為100 cm的鐵絲圍成一個正方形,正方形的邊長為多少?
(2)長方形的周長為40 cm,長比寬 多3 cm,求長和寬分別是多少.
(3)某校女生人數(shù)占全體學(xué)生數(shù)的55%,比男生多50人,這個學(xué)校有多少學(xué)生?
(4)a、b兩地相距200千米,一輛小車從a地開往b地,3小時后離b地還有20千米,求小車的平均速度.
解:略.
設(shè)未知數(shù),找等量關(guān)系,用方程表示簡單實際問題中的相等關(guān)系.
活動2跟蹤訓(xùn)練
1.下列方程的解為`=2的是(c)
a.5-`=2
b.3`-1=4-2`
c.3-(`-1)=2`-2
d.`-4=5`-2
2.在2+1=3,4+`=1,y2-2y=3`,`2-2`+1中,一元一次方程有(a)
a.1個b.2個c.3個d.4個
3.老師要求把一篇有2 000字的文章輸入電腦,小明輸入了700字,剩下的讓小華輸入,小華平均每分鐘能輸入50個字,問:小華要多少分鐘才能完成?(請設(shè)未知數(shù)列出方程,并嘗試求出方程的解)
解:設(shè)小華要`分鐘完成,由題意,得
50`+700=2 000,
`=26.
活動3課堂小結(jié)
1.方程及一元一次方程的定義.
2.如何列方程,什么是方程的解.
3.1.2等式的性質(zhì)
1.了解等式的兩條性質(zhì).
2.會用等式的性質(zhì)解簡單的一元一次方程.
閱讀教材p81~82,思考下列問題.
1.等式的性質(zhì)有哪幾條?用字母怎樣表示?字母代表什么?
2.解方程的依據(jù)是什么?
知識探究
1.如果a=b,那么a±c=b±c(字母a、b、c可以表示具體的數(shù),也可以表示一個式子).
2.如果a=b,那么ac=bc.
3.如果a=b(c≠0),那么ac=bc.
自學(xué)反饋
1.已知a=b,請用“=”或“≠”填空:
(1)3a=3b;(2)a4=b4;(3)-5a=-5b.
2.利用等式的性質(zhì)解下列方程:
(1)`+7=26;
(2)- 5`=20;
(3)-2(`+1)=10.
解:(1)`=19.(2)`=-4.(3)`=-6.[來源:學(xué)_科_網(wǎng)]
注意用等式的性質(zhì)對方程進行逐步變形,最終可變形為“`=a”的形式.
活動1小組討論
例利用等式的性質(zhì)解下列方程并檢 驗:
(1)`-9 =6;
(2)-0.2`=10;
(3)3-13`=2;
(4)-2`+1=0;
(5)4(`+1)=-20.
解:(1)`=15.(2)`=-50.(3)`=3.(4)`=12.(5)`=-6.
運用等式的性質(zhì)解方程不能漏掉某一邊或某一項.
活動2跟蹤訓(xùn)練
利用等式的性質(zhì)解下列方程并檢驗:
(1)`+5=8;[來源:學(xué)|科|網(wǎng)z|`|`|k]
(2)-`-1=0;[來源:學(xué)+科+網(wǎng)z+`+`+k]
(3)-2-14`=2;
(4)6`-2=0.
解:(1)`=3.(2)`=-1.(3)=-16.(4)`=13 .
活動3課堂小 結(jié)
1.等式有哪些性質(zhì)?
2.在用等式的性質(zhì)解方程時要注意什么?
會從實際問題中抽象出數(shù)學(xué)模型,會用一元一次方程解決電話計費等有關(guān)方案決策的問題.
閱讀教材p104~105探究3的內(nèi)容,思考題中所提出的問題.
知識探究
方案決策問題解題的基本方法是求得每種方案的結(jié)果,再結(jié)合結(jié)果做出判斷.[來源:學(xué)科網(wǎng)]
自學(xué)反饋
某市乘公交車(非空調(diào))每次需投幣1.5元或者購買ic卡,每次刷卡扣款1.35元,但辦理ic卡時需付工本費15元.問需乘坐公交車多少次時兩種收費方式的收費一 樣?當(dāng)超過這個次數(shù)后哪種收費方 式較合算?[來源:z``k.com]
解:100次,購買ic卡合算.
活動1小組討論
例(教 材p104探究3)電話計費問題
下表中有兩種移動電話計費方式.
月使用
費/元 主叫限定
時間/min 主叫超時
費/(元/min) 被叫
方式一 58 150 0.25 免費
方式二 88 350 0.19 免費
考慮下列問題:
(1)設(shè)一個月 用移動電話主叫為t min(t是正整數(shù)).根據(jù)上表,列表說明:當(dāng)t在不同時間范圍內(nèi)取值時,按方式一和方式二如何計費;
(2)觀察你的列表,你能從中發(fā)現(xiàn)如何根據(jù)主叫時間選擇省錢的計費方式嗎?通過計算驗證你的看法.
活動2跟蹤訓(xùn)練
某廠招聘運輸工,有兩種方法來結(jié)算工資,一種是每月基本工資300元,每運1噸貨給15元;另一種是沒有基本工資,每運1噸貨給20元.問每月運多少噸貨時兩種結(jié)算方法給的工資一樣多?如果某工人每月可運貨70噸,那么用哪種結(jié)算方法可多拿工資?
解:60噸,用第二種結(jié)算方法可多拿工 資.
活動3課堂小結(jié)
電話計費等有關(guān)的方案決策問題.
法算式教案篇6
?學(xué)習(xí)目標】
1、理解什么是一元一次方程。
2、理 解什么是方程的解及解方程,學(xué)會檢驗一個數(shù)值是不是方程的 解的方法。
?重點難點】能驗證一個數(shù)是否是一個方程 的解。
?導(dǎo)學(xué)指導(dǎo)】
一、溫故知新
1:前面學(xué) 過有關(guān)方程的一些 知識,同學(xué)們能說出什么是方程嗎?
答: 叫做方程。
2: 判斷下列是不是 方程,是打“adic;”,不是打“×”:
① ;( ) ②3+4=7;( )
③ ;( )④ ;( )
⑤ ;( ) ⑥ ;( )
二、自主探究
1. 一元一次方程的概念
觀察下面方程的特點
(1)4 =24;(2)1700+150=2450
(3)0.52`-(1-0.52`)=80
小結(jié):象上面方程,它們都含有 個未知數(shù)(元),未知數(shù)的次數(shù)都是 ,這樣的方程叫做一元一次方程。
(即方程的一邊或兩邊含有未知數(shù))
2.方程的解
如何求出使方程左右兩邊相等的未知數(shù)的值?
如方程 =4中, =?
方程 中的 呢?
請用小學(xué)所學(xué)過的逆運算嘗試解決上面的問題。
解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。
例 檢驗2和-3是否為方程 的解。
解:當(dāng)`=2時,
左邊= = ,
右邊= = ,
∵左邊 右邊(填=或≠)
∴`=2 方程的解(填是或不是)
當(dāng)`= 時,
左邊= = ,
右邊= = ,
∵左邊 右邊(填=或≠)
∴`=3 方程的解(填是或不是)
?課堂練習(xí)】
1.判斷下列是不是一元一次方程,是打“adic;”,不是打“×”:
① =4;( ) ② ;( )
③ ; ( ) ④ ; ( )
⑤ ; ( ) ⑥3+4 =7 ;( )
2.檢驗3和-1是否為方程 的解。
3.`=1是下列方程( )的解:
(a) , ( b) ,
(c) ), ( d)
4 、已知方程 是關(guān)于`的一元一次方程,則a= 。
?要點歸納】:
1. 這節(jié)課我們學(xué)習(xí)了什么內(nèi)容?
2.什么是方程的解?如何檢驗一個數(shù)是否是方程的解?
?拓展訓(xùn)練】:
1.檢驗2和 是否為方程 的解。
2.老師要求把一篇有2000字的文章輸入電腦,小明輸入了700字,剩下的讓小華輸入,小華平均每分鐘能輸入50個字,問:小華要多少分鐘才能完成?(請設(shè)未知數(shù)列出方程,并嘗試求出 方程的解)
?總結(jié)反思】: