導(dǎo)函數(shù)教案6篇

時(shí)間:2022-10-14 作者:Cold-blooded 備課教案

教案在撰寫(xiě)的時(shí)候,你們需要強(qiáng)調(diào)文字表述規(guī)范,只有對(duì)自己的教學(xué)任務(wù)進(jìn)行分析后,我們寫(xiě)出的教案才是有價(jià)值的,范文社小編今天就為您帶來(lái)了導(dǎo)函數(shù)教案6篇,相信一定會(huì)對(duì)你有所幫助。

導(dǎo)函數(shù)教案6篇

導(dǎo)函數(shù)教案篇1

一、教材分析

1、 教材的地位和作用:

函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對(duì)函數(shù)概念理解的程度會(huì)直接影響其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。

2、 教學(xué)目標(biāo)及確立的依據(jù):

教學(xué)目標(biāo):

(1) 教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。

(2) 能力訓(xùn)練目標(biāo):通過(guò)教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。

(3) 德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。

教學(xué)目標(biāo)確立的依據(jù):

函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。

3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):

教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。

教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。

重點(diǎn)難點(diǎn)確立的依據(jù):

映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的來(lái)說(shuō)不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來(lái)有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。

二、教材的處理:

將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來(lái)更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。

三、教學(xué)方法和學(xué)法

教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。

依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過(guò)師生的共同討論來(lái)幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。

學(xué)法:四、教學(xué)程序

一、課程導(dǎo)入

通過(guò)舉以下一個(gè)通俗的例子引出通過(guò)某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。

例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問(wèn),通過(guò)“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?

二. 新課講授:

(1) 接著再通過(guò)幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:a→b,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)判斷一個(gè)從a到b的對(duì)應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過(guò)對(duì)應(yīng)法則f在b中是否有唯一確定的元素與之對(duì)應(yīng)。

(2)鞏固練習(xí)課本52頁(yè)第八題。

此練習(xí)能讓更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。

例1. 給出學(xué)生初中學(xué)過(guò)的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過(guò)畫(huà)圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得a中的任何一個(gè)元素在集合b中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對(duì)應(yīng)法則f),并說(shuō)明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。

并把函數(shù)的近代定義與映射定義比較使認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。

再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。

3. f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。

4. f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過(guò)f作用后的結(jié)果。

5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。

66. “f:a→b”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。

三.講解例題

例1.問(wèn)y=1(x∈a)是不是函數(shù)?

解:y=1可以化為y=0*x+1

畫(huà)圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。

[注]:引導(dǎo)從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。

四.課時(shí)小結(jié):

1. 映射的定義。

2. 函數(shù)的近代定義。

3. 函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。

4. 函數(shù)近代定義的五大注意點(diǎn)。

五.課后作業(yè)及板書(shū)設(shè)計(jì)

書(shū)本p51 習(xí)題2.1的1、2寫(xiě)在書(shū)上3、4、5上交。

預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。

函數(shù)(一)

一、映射:

2.函數(shù)近代定義: 例題練習(xí)

二、函數(shù)的定義 [注]1—5

1.函數(shù)傳統(tǒng)定義

三、作業(yè):

導(dǎo)函數(shù)教案篇2

學(xué)習(xí)目標(biāo):

(1)理解函數(shù)的概念

(2)會(huì)用集合與對(duì)應(yīng)語(yǔ)言來(lái)刻畫(huà)函數(shù),

(3)了解構(gòu)成函數(shù)的要素。

重點(diǎn):

函數(shù)概念的理解

難點(diǎn)

函數(shù)符號(hào)y=f(x)的理解

知識(shí)梳理:

自學(xué)課本p29—p31,填充以下空格。

1、設(shè)集合a是一個(gè)非空的實(shí)數(shù)集,對(duì)于a內(nèi) ,按照確定的對(duì)應(yīng)法則f,都有 與它對(duì)應(yīng),則這種對(duì)應(yīng)關(guān)系叫做集合a上的一個(gè)函數(shù),記作 。

2、對(duì)函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集a)叫做這個(gè)函數(shù)的 ,所有函數(shù)值的集合 叫做這個(gè)函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫(xiě)為 。

3、因?yàn)楹瘮?shù)的值域被 完全確定,所以確定一個(gè)函數(shù)只需要

?

4、依函數(shù)定義,要檢驗(yàn)兩個(gè)給定的變量之間是否存在函數(shù)關(guān)系,只要檢驗(yàn):

① ;② 。

5、設(shè)a, b是兩個(gè)實(shí)數(shù),且a

(1)滿足不等式 的實(shí)數(shù)x的集合叫做閉區(qū)間,記作 。

(2)滿足不等式a

(3)滿足不等式 或 的實(shí)數(shù)x的集合叫做半開(kāi)半閉區(qū)間,分別表示為 ;

分別滿足x≥a,x>a,x≤a,x

其中實(shí)數(shù)a, b表示區(qū)間的兩端點(diǎn)。

完成課本p33,練習(xí)a 1、2;練習(xí)b 1、2、3。

例題解析

題型一:函數(shù)的概念

例1:下圖中可表示函數(shù)y=f(x)的圖像的只可能是( )

練習(xí):設(shè)m={x| },n={y| },給出下列四個(gè)圖像,其中能表示從集合m到集合n的函數(shù)關(guān)系的有____個(gè)。

題型二:相同函數(shù)的判斷問(wèn)題

例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與

④ 與 其中表示同一函數(shù)的是( )

a. ② ③ b. ② ④ c. ① ④ d. ④

練習(xí):已知下列四組函數(shù),表示同一函數(shù)的是( )

a. 和 b. 和

c. 和 d. 和

題型三:函數(shù)的定義域和值域問(wèn)題

例3:求函數(shù)f(x)= 的定義域

練習(xí):課本p33練習(xí)a組 4.

例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。

當(dāng)堂檢測(cè)

1、下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( a )

a、 b、

c、 d、

2、已知函數(shù) 滿足f(1)=f(2)=0,則f(-1)的值是( c )

a、5 b、-5 c、6 d、-6

3、給出下列四個(gè)命題:

① 函數(shù)就是兩個(gè)數(shù)集之間的對(duì)應(yīng)關(guān)系;

② 若函數(shù)的定義域只含有一個(gè)元素,則值域也只含有一個(gè)元素;

③ 因?yàn)?的函數(shù)值不隨 的變化而變化,所以 不是函數(shù);

④ 定義域和對(duì)應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了.

其中正確的有( b )

a. 1 個(gè) b. 2 個(gè) c. 3個(gè) d. 4 個(gè)

4、下列函數(shù)完全相同的是 ( d )

a. , b. ,

c. , d. ,

5、在下列四個(gè)圖形中,不能表示函數(shù)的圖象的是 ( b )

6、設(shè) ,則 等于 ( d )

a. b. c. 1 d.0

7、已知函數(shù) ,求 的值.( )

導(dǎo)函數(shù)教案篇3

目標(biāo):

1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會(huì)判斷一元二次方程根的存在性及根的個(gè)數(shù) ;

2.讓學(xué)生了解函數(shù)的零點(diǎn)與方程根的聯(lián)系 ;

3.讓學(xué)生認(rèn)識(shí)到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點(diǎn)中的作用 ;

4。培養(yǎng)學(xué)生動(dòng)手操作的能力 。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):零點(diǎn)的概念及存在性的判定;

難點(diǎn):零點(diǎn)的確定。

三、復(fù)習(xí)引入

例1:判斷方程 x2-x-6=0 解的存在。

分析:考察函數(shù)f(x)= x2-x-6, 其

圖像為拋物線容易看出,f(0)=-60,

f(4)0,f(-4)0

由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,

點(diǎn)b (0,-6)與點(diǎn)c(4,6)之間的那部分曲線

必然穿過(guò)x軸,即在區(qū)間(0,4)內(nèi)至少有點(diǎn)

x1 使f(x1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至

少有點(diǎn)x2,使得f( x2)=0,而方程至多有兩

個(gè)解,所以在(-4,0),(0,4)內(nèi)各有一解

定義:對(duì)于函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù) x叫函數(shù)y=f(x)的零點(diǎn)

抽象概括

y=f(x)的圖像與x軸的交點(diǎn)的橫坐標(biāo)叫做該函數(shù)的零點(diǎn),即f(x)=0的解。

若y=f(x)的`圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個(gè)零點(diǎn),即f(x)=0在 (a,b)內(nèi)至少有一個(gè)實(shí)數(shù)解。

f(x)=0有實(shí)根(等價(jià)與y=f(x))與x軸有交點(diǎn)(等價(jià)與)y=f(x)有零點(diǎn)

所以求方程f(x)=0的根實(shí)際上也是求函數(shù)y=f(x)的零點(diǎn)

注意:1、這里所說(shuō)若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個(gè)實(shí)數(shù)解指出了方程f(x)=0的實(shí)數(shù)解的存在性,并不能判斷具體有多少個(gè)解;

2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實(shí)數(shù)解;

3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;

4、但此結(jié)論反過(guò)來(lái)不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒(méi)有零點(diǎn)。

四、知識(shí)應(yīng)用

例2:已知f(x)=3x-x2 ,問(wèn)方程f(x)=0在區(qū)間[-1,0]內(nèi)沒(méi)有實(shí)數(shù)解?為什么?

解:f(x)=3x-x2的圖像是連續(xù)曲線, 因?yàn)?/p>

f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點(diǎn),即f(x)=0在區(qū)間[-1,0]內(nèi)有實(shí)數(shù)解

練習(xí):求函數(shù)f(x)=lnx+2x-6 有沒(méi)有零點(diǎn)?

例3 判定(x-2)(x-5)=1有兩個(gè)相異的實(shí)數(shù)解,且有一個(gè)大于5,一個(gè)小于2。

解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有

f(5)=(5-2)(5-5)-1=-1

f(2)=(2-2)(2-5)-1=-1

又因?yàn)閒(x)的圖像是開(kāi)口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個(gè)交點(diǎn),在( -,2)內(nèi)也有一個(gè)交點(diǎn),所以方程式(x-2)(x-5)=1有兩個(gè)相異數(shù)解,且一個(gè)大于5,一個(gè)小于2。

練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個(gè)實(shí)根均在[-1,1]內(nèi),求m的取值范圍。

五、課后作業(yè)

p133第2,3題

導(dǎo)函數(shù)教案篇4

教材分析

在函數(shù)教學(xué)中,我們不僅要在教會(huì)函數(shù)知識(shí)上下功夫,而且還應(yīng)該追求解決問(wèn)題的“常規(guī)方法”——基本函數(shù)知識(shí)中所蘊(yùn)含的思想方法,要從數(shù)學(xué)思想方法的高度進(jìn)行函數(shù)教學(xué)。 在函數(shù)的教學(xué)中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。

1 .注重“類比教學(xué)” 在函數(shù)教學(xué)中我們期望的是通過(guò)對(duì)前面知識(shí)的學(xué)習(xí)方法的傳授,達(dá)到對(duì)后續(xù)知識(shí)的學(xué)習(xí)產(chǎn)生影響,使學(xué)生達(dá)到舉一反三,觸類旁通的目的,讓學(xué)生順利地由 “ 學(xué)會(huì) ” 到 “ 會(huì)學(xué) ” ,真正實(shí)現(xiàn) “ 教是為了不教 ” 的目的.

2. 注重“數(shù)學(xué)結(jié)合”的教學(xué)

數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過(guò)數(shù)與形之間的對(duì)應(yīng)和轉(zhuǎn)化來(lái)解決數(shù)學(xué)問(wèn)題。它包含以形助數(shù)和以數(shù)解形兩個(gè)方面,利用它可使復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長(zhǎng)。

( 1 )讓學(xué)生經(jīng)歷繪制函數(shù)圖象的具體過(guò)程。

( 2 )切莫急于呈現(xiàn)畫(huà)函數(shù)圖象的簡(jiǎn)單畫(huà)法。

( 3 )注意讓學(xué)生體會(huì)研究具體函數(shù)圖象規(guī)律的方法。

知識(shí)技能

目標(biāo)

1、理解直線y=kx+b與y=kx之間的位置關(guān)系;

2、會(huì)選擇兩個(gè)合適的點(diǎn)畫(huà)出一次函數(shù)的圖象;

3、掌握一次函數(shù)的性質(zhì).

過(guò)程與方法目標(biāo)

1、通過(guò)研究圖象,經(jīng)歷知識(shí)的歸納、探究過(guò)程;培養(yǎng)學(xué)生觀察、比較、概括、推理的能力;

2、通過(guò)一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗(yàn)數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。

情感態(tài)度目標(biāo)

1、通過(guò)畫(huà)函數(shù)圖象并借助圖象研究函數(shù)的性質(zhì),體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受函數(shù)圖象的簡(jiǎn)潔美;

2、在探究一次函數(shù)的圖象和性質(zhì)的活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神。

教學(xué)重點(diǎn)

一次函數(shù)的圖象和性質(zhì)。

教學(xué)難點(diǎn)

由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對(duì)性質(zhì)的理解。

導(dǎo)函數(shù)教案篇5

一、教材分析

(一)內(nèi)容說(shuō)明

函數(shù)是中學(xué)數(shù)學(xué)的重要內(nèi)容,中學(xué)數(shù)學(xué)對(duì)函數(shù)的研究大致分成了三個(gè)階段。

三角函數(shù)是最具代表性的一種基本初等函數(shù)。4.8節(jié)是第二章《函數(shù)》學(xué)習(xí)的延伸,也是第四章《三角函數(shù)》的核心內(nèi)容,是在前面已經(jīng)學(xué)習(xí)過(guò)正、余弦函數(shù)的圖象、三角函數(shù)的有關(guān)概念和公式基礎(chǔ)上進(jìn)行的,其知識(shí)和方法將為后續(xù)內(nèi)容的學(xué)習(xí)打下基礎(chǔ),有承上啟下的作用。

本節(jié)課是數(shù)形結(jié)合思想方法的良好素材。數(shù)形結(jié)合是數(shù)學(xué)研究中的重要思想方法和解題方法。

著名數(shù)學(xué)家華羅庚先生的詩(shī)句:......數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休......可以說(shuō)精辟地道出了數(shù)形結(jié)合的重要性。

本節(jié)通過(guò)對(duì)數(shù)形結(jié)合的進(jìn)一步認(rèn)識(shí),可以改進(jìn)學(xué)習(xí)方法,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心和興趣。另外,三角函數(shù)的曲線性質(zhì)也體現(xiàn)了數(shù)學(xué)的對(duì)稱之美、和諧之美。

因此,本節(jié)課在教材中的知識(shí)作用和思想地位是相當(dāng)重要的。

(二)課時(shí)安排

4.8節(jié)教材安排為4課時(shí),我計(jì)劃用5課時(shí)

(三)目標(biāo)和重、難點(diǎn)

1.教學(xué)目標(biāo)

教學(xué)目標(biāo)的確定,考慮了以下幾點(diǎn):

(1)高一學(xué)生有一定的抽象思維能力,而形象思維在學(xué)習(xí)中占有不可替代的地位,所以本節(jié)要緊緊抓住數(shù)形結(jié)合方法進(jìn)行探索;

(2)本班學(xué)生對(duì)數(shù)學(xué)科特別是函數(shù)內(nèi)容的學(xué)習(xí)有畏難情緒,所以在內(nèi)容上要降低深難度。

(3)學(xué)會(huì)方法比獲得知識(shí)更重要,本節(jié)課著眼于新知識(shí)的探索過(guò)程與方法,鞏固應(yīng)用主要放在后面的三節(jié)課進(jìn)行。

由此,我確定了以下三個(gè)層面的教學(xué)目標(biāo):

(1)知識(shí)層面:結(jié)合正弦曲線、余弦曲線,師生共同探索發(fā)現(xiàn)正(余)弦函數(shù)的性質(zhì),讓學(xué)生學(xué)會(huì)正確表述正、余函數(shù)的單調(diào)性和對(duì)稱性,理解體會(huì)周期函數(shù)性質(zhì)的研究過(guò)程和數(shù)形結(jié)合的研究方法;

(2)能力層面:通過(guò)在教師引導(dǎo)下探索新知的過(guò)程,培養(yǎng)學(xué)生觀察、分析、歸納的自學(xué)能力,為學(xué)生學(xué)習(xí)的可持續(xù)發(fā)展打下基礎(chǔ);

(3)情感層面:通過(guò)運(yùn)用數(shù)形結(jié)合思想方法,讓學(xué)生體會(huì)(數(shù)學(xué))問(wèn)題從抽象到形象的轉(zhuǎn)化過(guò)程,體會(huì)數(shù)學(xué)之美,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的信心和興趣。

2.重、難點(diǎn)

由以上教學(xué)目標(biāo)可知,本節(jié)重點(diǎn)是師生共同探索,正、余函數(shù)的性質(zhì),在探索中體會(huì)數(shù)形結(jié)合思想方法。

難點(diǎn)是:函數(shù)周期定義、正弦函數(shù)的單調(diào)區(qū)間和對(duì)稱性的理解。

為什么這樣確定呢?

因?yàn)橹芷诟拍钍菍W(xué)生第一次接觸,理解上易錯(cuò);單調(diào)區(qū)間從圖上容易看出,但用一個(gè)區(qū)間形式表示出來(lái),學(xué)生感到困難。

如何克服難點(diǎn)呢?

其一,抓住周期函數(shù)定義中的關(guān)鍵字眼,舉反例說(shuō)明;

其二,利用函數(shù)的周期性規(guī)律,抓住“橫向距離”和“k∈z"的含義,充分結(jié)合圖象來(lái)理解單調(diào)性和對(duì)稱性

二、教法分析

(一)教法說(shuō)明教法的確定基于如下考慮:

(1)心理學(xué)的研究表明:只有內(nèi)化的東西才能充分外顯,只有學(xué)生自己獲取的知識(shí),他才能靈活應(yīng)用,所以要注重學(xué)生的自主探索。

(2)本節(jié)目的是讓學(xué)生學(xué)會(huì)如何探索、理解正、余弦函數(shù)的性質(zhì)。教師始終要注意的是引導(dǎo)學(xué)生探索,而不是自己探索、學(xué)生觀看,所以教師要引導(dǎo),而且只能引導(dǎo)不能代辦,否則不但沒(méi)有教給學(xué)習(xí)方法,而且會(huì)讓學(xué)生產(chǎn)生依賴和倦怠。

(3)本節(jié)內(nèi)容屬于本源性知識(shí),一般采用觀察、實(shí)驗(yàn)、歸納、總結(jié)為主的方法,以培養(yǎng)學(xué)生自學(xué)能力。

所以,根據(jù)以人為本,以學(xué)定教的原則,我采取以問(wèn)題為解決為中心、啟發(fā)為主的教學(xué)方法,形成教師點(diǎn)撥引導(dǎo)、學(xué)生積極參與、師生共同探討的課堂結(jié)構(gòu)形式,營(yíng)造一種民主和諧的課堂氛圍。

(二)教學(xué)手段說(shuō)明:

為完成本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn)、克服難點(diǎn),我采取了以下三個(gè)教學(xué)手段:

(1)精心設(shè)計(jì)課堂提問(wèn),整個(gè)課堂以問(wèn)題為線索,帶著問(wèn)題探索新知,因?yàn)闆](méi)有問(wèn)題就沒(méi)有發(fā)現(xiàn)。

(2)為便于課堂操作和知識(shí)條理化,事先制作正弦函數(shù)、余弦函數(shù)性質(zhì)表,讓學(xué)生當(dāng)堂完成表格的填寫(xiě);

(3)為節(jié)省課堂時(shí)間,制作幻燈片演示正、余弦函數(shù)圖象和性質(zhì),也可以使教學(xué)更生動(dòng)形象和連貫。

三、學(xué)法和能力培養(yǎng)

我發(fā)現(xiàn),許多學(xué)生的學(xué)習(xí)方法是:直接記住函數(shù)性質(zhì),在解題中套用結(jié)論,對(duì)結(jié)論的來(lái)源不理解,知其然不知其所以然,應(yīng)用中不能變通和遷移。

本節(jié)的學(xué)習(xí)方法對(duì)后續(xù)內(nèi)容的學(xué)習(xí)具有指導(dǎo)意義。為了培養(yǎng)學(xué)法,充分關(guān)注學(xué)生的可持續(xù)發(fā)展,教師要轉(zhuǎn)換角色,站在初學(xué)者的位置上,和學(xué)生共同探索新知,共同體驗(yàn)數(shù)形結(jié)合的研究方法,體驗(yàn)周期函數(shù)的研究思路;幫助學(xué)生實(shí)現(xiàn)知識(shí)的意義建構(gòu),幫助學(xué)生發(fā)現(xiàn)和總結(jié)學(xué)習(xí)方法,使教師成為學(xué)生學(xué)習(xí)的高級(jí)合作伙伴。

教師要做到:

授之以漁,與之合作而漁,使學(xué)生享受漁之樂(lè)趣。因此

1.本節(jié)要教給學(xué)生看圖象、找規(guī)律、思考提問(wèn)、交流協(xié)作、探索歸納的學(xué)習(xí)方法。

2.通過(guò)本課的探索過(guò)程,培養(yǎng)學(xué)生觀察、分析、交流、合作、類比、歸納的學(xué)習(xí)能力及數(shù)形結(jié)合(看圖說(shuō)話)的意識(shí)和能力。

四、教學(xué)程序

指導(dǎo)思想是:兩條線索、三大特點(diǎn)、四個(gè)環(huán)節(jié)

(一)導(dǎo)入

引出數(shù)形結(jié)合思想方法,強(qiáng)調(diào)其含義和重要性,告訴學(xué)生,本節(jié)課將利用數(shù)形結(jié)合方法來(lái)研究,會(huì)使學(xué)習(xí)變得輕松有趣。

采用這樣的引入方法,目的是打消學(xué)生對(duì)函數(shù)學(xué)習(xí)的畏難情緒,引起學(xué)生注意,也激起學(xué)生好奇和興趣。

(二)新知探索主要環(huán)節(jié),分為兩個(gè)部分

教學(xué)過(guò)程如下:

第一部分————師生共同研究得出正弦函數(shù)的性質(zhì)

1.定義域、值域2.周期性

3.單調(diào)性(重難點(diǎn)內(nèi)容)

為了突出重點(diǎn)、克服難點(diǎn),采用以下手段和方法:

(1)利用多媒體動(dòng)態(tài)演示函數(shù)性質(zhì),充分體現(xiàn)數(shù)形結(jié)合的重要作用;

(2)以層層深入,環(huán)環(huán)相扣的課堂提問(wèn),啟發(fā)學(xué)生思維,反饋課堂信息,使問(wèn)題成為探索新知的線索和動(dòng)力,隨著問(wèn)題的解決,學(xué)生的積極性將被調(diào)動(dòng)起來(lái)。

(3)單調(diào)區(qū)間的探索過(guò)程是:

先在靠近原點(diǎn)的一個(gè)單調(diào)周期內(nèi)找出正弦函數(shù)的一個(gè)增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識(shí)認(rèn)識(shí)過(guò)程。

**教師結(jié)合圖象幫助學(xué)生理解并強(qiáng)調(diào)“距離”(“長(zhǎng)度”)是周期的多少倍

為什么要這樣強(qiáng)調(diào)呢?

因?yàn)檫@是對(duì)知識(shí)的一種意義建構(gòu),有助于以后理解記憶正弦型函數(shù)的相關(guān)性質(zhì)。

4.對(duì)稱性

設(shè)計(jì)意圖:

(1)因?yàn)槠媾夹允翘厥獾膶?duì)稱性,掌握了對(duì)稱性,容易得出奇偶性,所以著重講清對(duì)稱性。體現(xiàn)了從一般到特殊的知識(shí)再現(xiàn)過(guò)程。

(2)從正弦函數(shù)的對(duì)稱性看到了數(shù)學(xué)的對(duì)稱之美、和諧之美,體現(xiàn)了數(shù)學(xué)的審美功能。

5.最值點(diǎn)和零值點(diǎn)

有了對(duì)稱性的理解,容易得出此性質(zhì)。

第二部分————學(xué)習(xí)任務(wù)轉(zhuǎn)移給學(xué)生

設(shè)計(jì)意圖:

(1)通過(guò)把學(xué)習(xí)任務(wù)轉(zhuǎn)移給學(xué)生,激發(fā)學(xué)生的主體意識(shí)和成就動(dòng)機(jī),利于學(xué)生作自我評(píng)價(jià);

(2)通過(guò)學(xué)生自主探索,給予學(xué)生解決問(wèn)題的自主權(quán),促進(jìn)生生交流,利于教師作反饋評(píng)價(jià);

(3)通過(guò)課堂教學(xué)結(jié)構(gòu)的改革,提高課堂教學(xué)效率,最終使學(xué)生成為獨(dú)立的學(xué)習(xí)者,這也符合建構(gòu)主義的教學(xué)原則。

(三)鞏固練習(xí)

補(bǔ)充和選作題體現(xiàn)了課堂要求的差異性。

(四)結(jié)課

五、板書(shū)說(shuō)明既要體現(xiàn)原則性又要考慮靈活性

1.板書(shū)要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡(jiǎn)明扼要反映知識(shí)結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識(shí);同時(shí)不完全按課本上的呈現(xiàn)方式來(lái)編排板書(shū)。即體現(xiàn)系統(tǒng)性、程序性、概括性、指導(dǎo)性、啟發(fā)性、創(chuàng)造性的原則;(原則性)

2.使用幻燈片輔助板書(shū),節(jié)省課堂時(shí)間,使課堂進(jìn)程更加連貫。(靈活性)

六、效果及評(píng)價(jià)說(shuō)明

(一)知識(shí)診斷

(二)評(píng)價(jià)說(shuō)明

1.針對(duì)本班學(xué)生情況對(duì)課本進(jìn)行了適當(dāng)改編、細(xì)化,有利于難點(diǎn)克服和學(xué)生主體性的調(diào)動(dòng)。

2.根據(jù)課堂上師生的雙邊活動(dòng),作出適時(shí)調(diào)整、補(bǔ)充(反饋評(píng)價(jià));根據(jù)學(xué)生課后作業(yè)、提問(wèn)等情況,反復(fù)修改并指導(dǎo)下節(jié)課的設(shè)計(jì)(反復(fù)評(píng)價(jià))。

3.本節(jié)課充分體現(xiàn)了面向全體學(xué)生、以問(wèn)題解決為中心、注重知識(shí)的建構(gòu)過(guò)程與方法、重視學(xué)生思想與情感的'設(shè)計(jì)理念,積極地探索和實(shí)踐我校的科研課題——努力推進(jìn)課堂教學(xué)結(jié)構(gòu)改革。

通過(guò)這樣的探索過(guò)程,相信學(xué)生能從中有所體會(huì),對(duì)后續(xù)內(nèi)容的學(xué)習(xí)和學(xué)生的可持續(xù)發(fā)展會(huì)有一定的幫助。希望很久以后留在學(xué)生記憶中的不是知識(shí)本身,而是方法與思想,是學(xué)習(xí)的習(xí)慣和熱情,這正是我們教育工作者追求的結(jié)果。

導(dǎo)函數(shù)教案篇6

教學(xué)目標(biāo):

1、經(jīng)歷描點(diǎn)法畫(huà)函數(shù)圖像的過(guò)程;

2、學(xué)會(huì)觀察、歸納、概括函數(shù)圖像的特征;

3、掌握 型二次函數(shù)圖像的特征;

4、經(jīng)歷從特殊到一般的認(rèn)識(shí)過(guò)程,學(xué)會(huì)合情推理。

教學(xué)重點(diǎn):

型二次函數(shù)圖像的描繪和圖像特征的歸納

教學(xué)難點(diǎn):

選擇適當(dāng)?shù)淖宰兞康闹岛拖鄳?yīng)的函數(shù)值來(lái)畫(huà)函數(shù)圖像,該過(guò)程較為復(fù)雜。

教學(xué)設(shè)計(jì):

一、回顧知識(shí)

前面我們?cè)趯W(xué)習(xí)正比例函數(shù)、一次函數(shù)和反比例函數(shù)時(shí)時(shí)如何進(jìn)一步研究這些函數(shù)的? 先(用描點(diǎn)法畫(huà)出函數(shù)的圖像,再結(jié)合圖像研究性質(zhì)。)

引入:我們仿照前面研究函數(shù)的方法來(lái)研究二次函數(shù),先從最特殊的形式即 入手。因此本節(jié)課要討論二次函數(shù) ( )的圖像。

板書(shū)課題:二次函數(shù) ( )圖像

二、探索圖像

1、 用描點(diǎn)法畫(huà)出二次函數(shù) 和 圖像

(1) 列表

引導(dǎo)學(xué)生觀察上表,思考一下問(wèn)題:

①無(wú)論x取何值,對(duì)于 來(lái)說(shuō),y的值有什么特征?對(duì)于 來(lái)說(shuō),又有什么特征?

②當(dāng)x取 等互為相反數(shù)時(shí),對(duì)應(yīng)的y的值有什么特征?

(2) 描點(diǎn)(邊描點(diǎn),邊總結(jié)點(diǎn)的位置特征,與上表中觀察的結(jié)果聯(lián)系起來(lái)).

(3) 連線,用平滑曲線按照x由小到大的順序連接起來(lái),從而分別得到 和 的圖像。

2、 練習(xí):在同一直角坐標(biāo)系中畫(huà)出二次函數(shù) 和 的圖像。

學(xué)生畫(huà)圖像,教師巡視并輔導(dǎo)學(xué)困生。(利用實(shí)物投影儀進(jìn)行講評(píng))

3、二次函數(shù) ( )的圖像

由上面的四個(gè)函數(shù)圖像概括出:

(1) 二次函數(shù)的 圖像形如物體拋射時(shí)所經(jīng)過(guò)的路線,我們把它叫做拋物線,

(2) 這條拋物線關(guān)于y軸對(duì)稱,y軸就是拋物線的對(duì)稱軸。

(3) 對(duì)稱軸與拋物線的交點(diǎn)叫做拋物線的頂點(diǎn)。注意:頂點(diǎn)不是與y軸的交點(diǎn)。

(4) 當(dāng) 時(shí),拋物線的開(kāi)口向上,頂點(diǎn)是拋物線上的最低點(diǎn),圖像在x軸的上方(除頂點(diǎn)外);當(dāng) 時(shí),拋物線的開(kāi)口向下,頂點(diǎn)是拋物線上的最高點(diǎn)圖像在x軸的 下方(除頂點(diǎn)外)。

(最好是用幾何畫(huà)板演示,讓學(xué)生加深理解與記憶)

三、課堂練習(xí)

觀察二次函數(shù) 和 的圖像

(1) 填空:

拋物線

頂點(diǎn)坐標(biāo)

對(duì)稱軸

位 置

開(kāi)口方向

(2)在同一坐標(biāo)系內(nèi),拋物線 和拋物線 的位置有什么關(guān)系?如果在同一個(gè)坐標(biāo)系內(nèi)畫(huà)二次函數(shù) 和 的圖像怎樣畫(huà)更簡(jiǎn)便?

(拋物線 與拋物線 關(guān)于x軸對(duì)稱,只要畫(huà)出 與 中的一條拋物線,另一條可利用關(guān)于x軸對(duì)稱來(lái)畫(huà))

四、例題講解

例題:已知二次函數(shù) ( )的圖像經(jīng)過(guò)點(diǎn)(-2,-3)。

(1) 求a 的值,并寫(xiě)出這個(gè)二次函數(shù)的解析式。

(2) 說(shuō)出這個(gè)二次函數(shù)圖像的頂點(diǎn)坐標(biāo)、對(duì)稱軸、開(kāi)口方向和圖像的位置。

練習(xí):(1)課本第31頁(yè)課內(nèi)練習(xí)第2題。

(2) 已知拋物線y=ax2經(jīng)過(guò)點(diǎn)a(-2,-8)。

(1)求此拋物線的函數(shù)解析式;

(2)判斷點(diǎn)b(-1,- 4)是否在此拋物線上。