解方程例5教案5篇

時間:2023-01-21 作者:betray 備課教案

一份出色的教案不僅能讓同學們愛上課堂,還能幫助提升自我的教學素質,只有在認真分析了教學目標后動筆,我們寫出的教案才有意義,下面是范文社小編為您分享的解方程例5教案5篇,感謝您的參閱。

解方程例5教案5篇

解方程例5教案篇1

教學目的:

1、在解決實際問題的過程中,進一步鞏固形如ax+b=c、ax-b=c的方程的解法,同時理解并掌握形如ax÷b=c的方程的解法,會列上述方程解決兩步計算的實際問題。

2、提高分析數量關系的能力,培養(yǎng)學生思維的靈活性。

3、在積極參與數學活動的過程中,樹立學好數學的信心。

教學重點、難點:

引導學生獨立分析問題,找出題目中的等量關系。

教學對策:

在積極參與數學活動的過程中,樹立學好數學的信心。

教學準備:

教學光盤

教學過程:

一、復習準備

1、解方程(練習一第6題的第1、3小題)

4x+12=50 2.3x-1.02=0.36

學生獨立完成,再指名學生板演并講評,集體訂正。

二、嘗試練習

師:剛才的兩道題同學們完成得很好,這道題你們還能自己解決嗎?試試看。

出示:30x÷2=360

學生獨立嘗試完成,全班交流。

指名學生說一說,解這個方程是第一步需要做什么?這樣做依據了等式的什么性質?

三、鞏固練習

1、出示練習一第7題。

(1)分析數量關系

提問:誰來說說三角形的面積公式是怎樣的?根據學生回答板書:s=ah÷2。聯系這個公式你能找出數量之間的相等關系嗎?(生獨立思考后在小組內交流)指名口答。你覺得在這些數量關系中,哪一個等量關系適合列方程?根據這個數量關系我們可以列出怎樣的方程?板書:1.3x÷2=0.39。

第⑵題生獨立思考并列出方程,在小組內說說自己的思考過程后全班交流。板書:3x+18=19.8。

(2)學生獨立計算,并檢驗答案是否正確,全班核對。

小結:在一個實際問題中,可能會有幾個不同的等量關系,我們應該選擇合適的等量關系來列方程。

2、練習一第8題。

學生讀題后可用自己喜歡的方法將與楊樹和松樹有關的信息分別列表整理(如列表,作標記等)

學生獨立解決后再說說數量之間有怎樣的數量關系,是根據什么樣的數量關系列出的方程,最后核對解方程的過程。(提示學生可從得數的合理性來初步檢驗)

3、練習一第9題。

學生獨立思考,指名分析數量關系,教師結合學生回答畫出線段圖幫助學生理解題意。

學生獨立解方程再集體訂正。

4、練習一第10題。

教師簡單介紹相關天文知識后,學生獨立解答,然后及時交流,教師及時講評。

5、練習一第11題。

學生讀題后教師提問:在本題中出現了兩個問題,那么我們在寫設句時要注意什么?(提示學生用不同的字母分別表示小亮出生時的身高和體重)

學生獨立解決,集體核對。結合學生板演情況進行講評,進一步規(guī)范學生的書寫格式。

6、練習一第12題。

提問:你能看懂這張發(fā)票上所提供的信息嗎?數量間有怎樣的等量關系呢

學生獨立列方程解答,同桌同學互相檢查,再集體訂正。

7、練習一第13題。

學生閱讀第13題,理解后獨立解決問題,再交流。

教師再補充幾題,如:98.6、212華氏度相當于多少攝氏度等。

四、全課小結

說一說你這一節(jié)課的學習收獲及還有什么問題。

五、布置作業(yè)

完成配套習題。

教后反思:

本課時是一節(jié)練習課,練習目標有兩個,一是通過練習讓學生掌握形如ax+b=c和ax-b=c的方程的解法,會列方程解決兩步計算的實際問題;二是借助一些對比練習,讓學生感受方程的思想方法和價值。課前,我學習了高教導的“課前思考”,在今天的練習課中補充了兩組題目,讓學生進行對比練習。題目是這樣的:(1)果園里有桃樹60棵,比梨樹的3倍少6棵,梨樹有多少棵?(2)果園里有梨樹60棵,比桃樹的3倍少6棵,桃樹有多少棵?課堂上,我先請學生分析每一題的數量關系,然后選擇合適的方法來解答。學生們經過分析、比較,發(fā)現類似第1小題這樣的題目適合用方程解,類似第2小題這樣的題目適合用算術方法解。另一組補充的題目是:(1)王老師買了3個足球,付了200元,找回8元。每個足球多少元?(2)水果店運進5箱蘋果,賣出56千克,還剩34千克。每箱蘋果多少千克?對于這兩題,我請學生認真分析數量關系后用自己喜歡的方法來解答,而且如果是列方程的話,試著列出不同的方程;如果是用算術方法解的可以列出不同的算式。課堂上學生思維活躍,在正確分析數量關系后列出了不同的方程或算式。

通過本節(jié)練習課,我想教師在教學中要更多地指導學生關注怎樣從一個個具體的問題情境中分析數量之間的相等關系,關注怎樣根據數量關系列出方程,從而在經歷實際問題數學化的過程中,獲得對用方程解決實際問題策略的體驗,進一步豐富學生解決問題的策略,加深學生對方程作為一種重要的數學思想方法的理解。

解方程例5教案篇2

一、教材分析:

1、教材所處的地位和作用:

從數學科學本身看,方程是代數學的核心內容,正是對于它的研究推動了整個代數學的發(fā)展,從代數中關于方程的分類看,一元一次方程是最簡單的代數方程,也是所有代數方程的基礎.教科書將本節(jié)內容安排在第一節(jié),一方面是對小學學段已經學過的有關算術方法解題和簡單方程的運用的進一步發(fā)展,另一方面考慮引入一元一次方程后,可以盡早滲透模型化的思想,使學生盡早接觸利用一元一次方程解決實際問題的方法.

?課程標準》對本課時的要求是通過具體實例歸納出方程及一元一次方程的概念,根據相等關系列出方程.讓學生在歸納和總結的過程中,初步建立數學模型思想,訓練學生主動探究的能力,能結合情境發(fā)現并提出問題,體會在解決問題中與他人合作的重要性,獲得解決問題的經驗.

2、教學目標:

根據課標的要求和本節(jié)內容的特點,我從知識技能、數學思考、情感價值觀三個方面確定本節(jié)課的目標:

知識技能目標

①通過對實際問題的分析,讓學生體驗從算術方法到代數方法是一種進步,歸納并理解一元一次方程的概念,領悟一元一次方程的意義和作用.

②在學生根據問題尋找相等關系、根據相等關系列出方程的過程中,培養(yǎng)學生獲取信息、分析問題、處理問題的能力.

③使學生經歷把實際問題抽象為數學方程的過程,認識到方程是刻畫現實世界的一種有效的數學模型,初步體會建立數學模型的思想.

數學思考目標

用字母表示未知數,找出相等關系,將實際問題抽象為數學問題,通過列方程解決.

情感價值目標:

讓學生體會到從算式到方程是數學的進步,滲透化未知為已知的重要數學思想.體驗數學與日常生活密切相關,認識到許多實際問題可以用數學方法解決,激發(fā)學習數學的熱情.

3、重點、難點:

結合以上目標,我在認真研究教材的基礎上,立足學生發(fā)展的宗旨,確定了本節(jié)課的教學重難點.

教學重點:知道什么是方程、一元一次方程,找相等關系列方程.

教學難點:思維習慣的轉變,分析數量關系,找相等關系。

二、教學策略:

如何突出重點,突破難點,從而達到教學目標的實現呢?在教學過程我運用了如下教法與手段:

1.生活引路,感知概念背景;

2.比較方法,明確意義;

3.感受過程,形成核心概念;

4.運用新知,鞏固方法;

5.歸納總結,鞏固發(fā)展.

本節(jié)課利用多媒體教學平臺,從學生熟悉的實際問題開始,將實際問題“數學化”建立方程模型.采用教師引導,學生自主探索、觀察、歸納的教學方式。

三、學情分析:

根據本節(jié)課的內容特點及學生的心理特征,在學法上,極力倡導了新課程的自主探究、合作交流的學習方法.通過對學生原有知識水平的分析,創(chuàng)設情境,使數學回到生活,鼓勵學生思考,探索情境中的所包含的數量關系,學生在經歷“建立方程模型”這一數學化的過程后,理解學習方程和一元一次方程的意義,培養(yǎng)學生抽象概括等能力.

四、教學過程:

本節(jié)課的教學過程我設計了以下六個環(huán)節(jié):

(一) 情景引入

采用教材中的情景

在這個環(huán)節(jié)中我提出了三個問題:

問題1:從上圖中你能獲得哪些信息?

問題2:你會用算術方法求嗎?

問題3:你會用方程的方法解決這個問題嗎?

(二)學習新知

在這個環(huán)節(jié)中,我首先提出一個問題:“如果設中山市到深圳市的路程為·千米,怎樣用式子表示中山市與東莞市的距離以及中山市與惠州市的距離?”,這樣,學生就會主動結合圖形,根據在《整式的加減》中學到的知識解決問題.

通過上述思考過程,學生已經初步了解到尋找已知量與未知量之間存在的相等關系是利用方程解決實際問題的關鍵所在.

然后我結合上面的過程簡單歸納列方程解決實際問題的步驟并給出方程的概念.

解決實際問題的步驟:(1)用字母表示問題中的未知數;(2)根據問題中的相等關系,列出方程.(17世紀的法國數學家迪卡爾最早使用·,y,z等字母表示未知數,而我國古代則用“天元、地元、人元、物元”等表示未知數,而且要比西方早1000多年,這說明我們中華民族是一個充滿智慧和才干的偉大民族.)

在這里我介紹了字母表示未知數的文化背景,其目的就是在文化層面上讓學生進一步理解數學、喜愛數學,展示數學的文化魅力,這正是培養(yǎng)學生情感價值觀的體現.

方程的概念:含有未知數的等式叫方程.小學里已經給出了方程的概念,這里可適當處理.

在這里我開始向學生滲透列方程解決實際問題的思考程序.

(三)討論交流

討論1:比較列算式和列方程兩種方法的特點.

列算式:只用已知數,表示計算程序,依據是間題中的數量關系;

列方程:可用未知數,表示相等關系,依據是問題中的等量關系。

通過討論,學生體會到了:用算術方法解題時,列出的算式只能用已知數,而列方程時,方程中既含有已知數,又含有用字母表示的未知數,這就是說,在方程中未知數(字母)可以和已知數一起表示問題中的數量關系.

而且隨著學習的深入,學生會逐步體會到從算式到方程是數學的進步。

緊接著的思考讓全班學生參與學習的過程,從而進一步地拓寬了學生的思維.

討論2:對于上面的問題,你還能列出其他方程嗎?如果能,你依據的是哪個相等關系?

在這個討論活動中,我采取了先小組合作交流后全班交流.

通過交流后,學生中出現如下結果:

從學生的分析所得,這兩種設未知數的方法就是在以后學習中將遇到的直接設元和間接設元兩種設元.

要求出路程,只要解出方程中的·即可,我們在以后幾節(jié)課中再來學習.

在這個環(huán)節(jié)里,問題的開放有利于培養(yǎng)學生的發(fā)散思維。這樣安排的目的是使所有的學生都有獨立思考的時間和合作交流的時間。

(四)初步應用

學生在小學已經學過簡易方程,通過以下的例題和練習可以回顧已經學過的知識,并為一元一次方程提供素材。

1、例題:根據下列問題,設未知數并列出方程:

(1)用一根長24㎝的鐵絲圍成一個正方形,正方形的邊長是多少?

(2)一臺計算機已使用1700小時,預計每月再使用150小時,經過多少月這臺計算機的使用時間達到規(guī)定的檢修時間2450小時?

(3)某校女生占全體學生數的52%,比男生多80人,這個學校有多少學生?

2、課堂練習:這一組例題和課堂練習的設置,其目的是讓學生更進一步加強列方程解決實際問題的能力。

(五)再探新知

提取例題和練習中出現的方程請學生觀察方程它們有什么共同的特點?然后達成共識:只含有一個未知數;未知數的次數是1.

在這個環(huán)節(jié)中,我引導學生觀察方程特點,給出一元一次方程的概念

教師總結:只含有一個未知數,并且未知數的次數是1,這樣的方程叫做一元一次方程.

思考:下列式子中,哪些是一元一次方程?通過思考辨析,使學生鞏固一元一次方程的概念,把握住概念的本質.

(六)課堂小結

讓學生先歸納,然后教師補充方式進行,主要圍繞以下問題:

本節(jié)課學習了哪些主要內容?一元一次方程的三個特征是什么?從實際問題中列出方程的步驟及關鍵是什么?

五、課堂設計理念

本節(jié)課著力體現以下幾個方面:

1、突出問題的應用意識。在各個環(huán)節(jié)的安排上都設計成一個個問題,使學生能圍繞問題展開討思考、討論,進行學習。

2、體現學生的主體意識。讓學生通過列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術方法到代數方法是數學的進步;讓學生通過合作交流,得出問題的不同解法;讓學生對一節(jié)課的學習內容、方法、注意點等進行歸納。

3、體現學生思維的層次性。教師首先引導學生嘗試用算術方法解決問題,然后再引導學生列出含未知數的式了,尋找相等關系列出方程,在尋找相等關系、設未知數及作業(yè)的布置等環(huán)節(jié)中都注意了學生思維的層次性。

4、滲透建模思想。把實際問題中的數量關系用方程形式表示出來,就是建立一種數學模型,教師有意識地按設未知數、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出方程模型的能力。

解方程例5教案篇3

教學設計

一 教學設計思路

通過小球飛行高度問題展示二次函數與一元二次方程的聯系。然后進一步舉例說明,從而得出二次函數與一元二次方程的關系。最后通過例題介紹用二次函數的圖象求一元二次方程的根的方法。

二 教學目標

1 知識與技能

(1).經歷探索函數與一元二次方程的關系的過程,體會方程與函數之間的聯系??偨Y出二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系,表述何時方程有兩個不等的實根、兩個相等的實數和沒有實根.

(2).會利用圖象法求一元二次方程的近似解。

2 過程與方法

經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.

三 情感態(tài)度價值觀

通過觀察二次函數圖象與x軸的交點個數,討論一元二次方程的根的情況培養(yǎng)學生自主探索意識,從中體會事物普遍聯系的觀點,進一步體會數形結合思想.

四 教學重點和難點

重點:方程與函數之間的聯系,會利用二次函數的圖象求一元二次方程的近似解。

難點:二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系。

五 教學方法

討論探索法

六 教學過程設計

(一)問題的提出與解決

問題 如圖,以20m/s的速度將小球沿與地面成30角的方向擊出時,球的飛行路線將是一條拋物線。如果不考慮空氣阻力,球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有關系

h=20t5t2。

考慮以下問題

(1)球的飛行高度能否達到15m?如能,需要多少飛行時間?

(2)球的飛行高度能否達到20m?如能,需要多少飛行時間?

(3)球的飛行高度能否達到20.5m?為什么?

(4)球從飛出到落地要用多少時間?

分析:由于球的飛行高度h與飛行時間t的關系是二次函數

h=20t-5t2。

所以可以將問題中h的值代入函數解析式,得到關于t的一元二次方程,如果方程有合乎實際的解,則說明球的飛行高度可以達到問題中h的值:否則,說明球的飛行高度不能達到問題中h的值。

解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。

當球飛行1s和3s時,它的高度為15m。

(2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。

當球飛行2s時,它的高度為20m。

(3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。

因為(-4)2-44.10。所以方程無解。球的飛行高度達不到20.5m。

(4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。

當球飛行0s和4s時,它的高度為0m,即0s時球從地面飛出。4s時球落回地面。

由學生小組討論,總結出二次函數與一元二次方程的解有什么關系?

例如:已知二次函數y=-x2+4x的值為3。求自變量x的值。

分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反過來,解方程x2-4x+3=0又可以看作已知二次函數y=x2-4+3的值為0,求自變量x的值。

一般地,我們可以利用二次函數y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0。

(二)問題的討論

二次函數(1)y=x2+x-2;

(2) y=x2-6x+9;

(3) y=x2-x+0。

的圖象如圖26.2-2所示。

(1)以上二次函數的圖象與x軸有公共點嗎?如果有,有多少個交點,公共點的橫坐標是多少?

(2)當x取公共點的橫坐標時,函數的值是多少?由此,你能得出相應的一元二次方程的根嗎?

先畫出以上二次函數的圖象,由圖像學生展開討論,在老師的引導下回答以上的問題。

可以看出:

(1)拋物線y=x2+x-2與x軸有兩個公共點,它們的橫坐標是-2,1。當x取公共點的橫坐標時,函數的值是0。由此得出方程x2+x-2=0的根是-2,1。

(2)拋物線y=x2-6x+9與x軸有一個公共點,這點的橫坐標是3。當x=3時,函數的值是0。由此得出方程x2-6x+9=0有兩個相等的實數根3。

(3)拋物線y=x2-x+1與x軸沒有公共點, 由此可知,方程x2-x+1=0沒有實數根。

總結:一般地,如果二次函數y= 的圖像與x軸相交,那么交點的橫坐標就是一元二次方程 =0的'根。

(三)歸納

一般地,從二次函數y=ax2+bx+c的圖象可知,

(1)如果拋物線y=ax2+bx+c與x軸有公共點,公共點的橫坐標是x0,那么當x=x0時,函數的值是0,因此x=x0就是方程ax2+bx+c=0的一個根。

(2)二次函數的圖象與x軸的位置關系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應著一元二次方程根的三種情況:沒有實數根,有兩個相等的實數根,有兩個不等的實數根。

由上面的結論,我們可以利用二次函數的圖象求一元二次方程的根。由于作圖或觀察可能存在誤差,由圖象求得的根,一般是近似的。

(四)例題

例 利用函數圖象求方程x2-2x-2=0的實數根(精確到0.1)。

解:作y=x2-2x-2的圖象(如圖),它與x軸的公共點的橫坐標大約是-0.7,2.7。

所以方程x2-2x-2=0的實數根為x1-0.7,x22.7。

七 小結

二次函數的圖象與x軸的位置關系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應著一元二次方程根的三種情況:沒有實數根,有兩個相等的實數根,有兩個不等的實數根。

?

八 板書設計

用函數觀點看一元二次方程

拋物線y=ax2+bx+c與方程ax2+bx+c=0的解之間的關系

例題

解方程例5教案篇4

一元二次方程教案

學習目標:

1、使學生會用列一元二次方程的方法解決有關增長率的應用題;

2、進一步培養(yǎng)學生分析問題、解決問題的能力。

學習重點:

會列一元二次方程解關于增長率問題的應用題。

學習難點:

如何分析題意,找出等量關系,列方程。

學習過程:

一、 復習提問:

列一元二次方程解應用題的一般步驟是什么?

二、探索新知

1、情境導入

問題:“坡耕地退耕還林還草”是國家為了解決西部地區(qū)水土流失生態(tài)問題、幫助廣大農民脫貧致富的一項戰(zhàn)略措施,某村村長為帶領全村群眾自覺投入“坡耕地退耕還林還草”行動,率先示范、將自家的坡耕地全部退耕,并于當年承包了30畝耕地的還林還草及管理任務,而實際完成的畝數比承包數增加的百分率為x,并保持這一增長率不變,村長完成了36、3畝坡耕地還林還草任務,求①增長率x是多少?②該村有50戶人家,每戶均地村長年完成的畝數為準,國家按每畝耕地500斤糧食給予補助,則國家將對該村投入補助糧食多少萬斤?

2、合作探究、師生互動

教師引導學生分析關于環(huán)保的情境導入問題,這是一個平均增長率問題,它的基數是30畝,平均增長的百分率為x,那么第一次增長后,即20實際完成的畝數是30(1+x),第二次增長后,即20實際完成的畝數是30(1+x)2,而這一年村長完成的畝數正好是36、3畝、

教師引導學生運用方程解決問題:

①30(1+x)2=36、3;(1+x)2=1、21;1+x=±1、1;x1=0、1=10%,x2=―2、1(舍去),所以增長的百分率為10%、

②全村坡耕地還林還草為50×36、3=1 815(畝),國家將補助糧食1 815×500=907 500(斤)=90、75(萬斤)、

三、例題學習

說明:題目中求平均每月增長的百分率,直接設增長的百分率為x,好處在于計算簡便且直接得出所求。

例、某產品原來每件是600元,由于連續(xù)兩次降價,現價為384元,如果兩降價的百分率相同,求每次降價百分之幾?

(小組合作交流教師點撥)

時間 基數 降價 降價后價錢

第一次 600 600x 600(1―x)

第二次 600(1―x) 600(1―x)x 600(1―x)2

(由學生寫出解答過程)

四、鞏固練習

一商店1月份的利潤是2500元,3月份的`利潤達到3000元,這兩個月的利潤平均增長的百分率是多少(精確到0、1%)?

五、課堂總結:

1、善于將實際問題轉化為數學問題,嚴格審題,弄清各數據間相互關系,正確列出方程。

2、注意解方程中的巧算和方程兩個根的取舍問題。

六、反饋練習:

1、某商品計劃經過兩個月的時間將售價提高20%,設每月平均增長率為x,則列出的方程為

a、x+(1+x)x=20% b、(1+x)2=20%

c、(1+x)2=1、2 d、(1+x%)2=1+20%

2、某工廠計劃兩年內降低成本36%,則平均每年降低成本的百分率是()

3、某種藥劑原售價為4元,經過兩次降價,現在每瓶售價為2、56元,問平均每次降低百分之幾?

解方程例5教案篇5

一、教材分析

1.教材的地位和作用

本節(jié)課是華東師大版七年級數學下冊第七章《二元一次方程組》中第二節(jié)的第四課時,它是在學習了代入消元法和加減消元法的基礎上進行學習的。能夠靈活熟練地掌握加減消元法,在解方程組時會更簡便準確,也是為以后學習用待定系數法求一次函數、二次函數關系式打下了基礎,特別是在聯系實際,應用方程組解決問題方面,它會起到事半功倍的效果。

2.教學目標

(1)知識目標:進一步了解加減消元法,并能夠熟練地運用這種方法解較為復雜的二元一次方程組。

(2)能力目標:經歷探索用“加減消元法”解二元一次方程組的過程,培養(yǎng)學生分析問題、解決問題的能力和創(chuàng)新意識。

(3)情感目標:在自由探索與合作交流的過程中,不斷讓學生體驗獲得成功的喜悅,培養(yǎng)學生的合作精神,激發(fā)學生的學習熱情,增強學生的自信心。

3.教學重點難點

教學重點:利用加減法解二元一次方程組。

教學難點:二元一次方程組加減消元法的靈活應用。

4.教學準備:多媒體、課件。

二、學情分析

我所任教的初一(2)班學生基礎比較好,他們已經具備了一定的探索能力,也初步養(yǎng)成了合作交流的習慣。大多數學生的好勝心比較強,性格比較活潑,他們希望有展現自我才華的機會,但是對于七年級的鄉(xiāng)鎮(zhèn)中學的學生來說,他們獨立分析問題的能力和靈活應用的能力還有待提高,很多時候還需要教師的點撥和引導。因此,我遵循學生的認識規(guī)律,由淺入深,適時引導,調動學生的積極性,并適當地給予表揚和鼓勵,借此增強他們的自信心。

三、教法與學法分析

說教法:啟發(fā)引導法,任務驅動法,情境教學法,演示法。

說學法:合作探究法,觀察比較法。

四.教學設計

(一)復習舊知

1、解二元一次方程組的基本思想是什么?(消元)

2、前面我們學過了哪些消元方法?(“單身”代入法、“朋友”加減法)

下列兩題可以用什么方法來求解?

2x3y=16①

x-y=3②3

學生:觀察、思考、討論和交流,然后口述解題方法。

教師:肯定、鼓勵、板書。

[設計意圖:通過復習,讓學生鞏固了相關的舊知識,同時也為本節(jié)課做了鋪墊]

(二)探究新知

1、情境導入

師:我們用代入法來解題第一步是找“單身”,用加減法來解題第一步是找“朋友”,再用同減異加的法則進行解答,那么我們一起來看一下這道題目:

問:這題能否用“單身”代入法或“朋友”加減法來求解?為什么?導入課題,板書課題。[設計意圖:利用富有挑戰(zhàn)性的問題,激發(fā)學生的好奇心和求知欲,可引發(fā)學生對問題的思考,并促進學生運用已有的知識去發(fā)現和獲取新的知識]

2、合作探究

(讓學生分組討論交流,主動探索出解法,教師巡視指導并肯定和鼓勵他們。)

總結解題方法:如果一個方程組中x或y的系

數不相同時,也就是說它們不是“朋友”時,先要想辦法把“陌生人”變成“朋友”。

方法一:將方程①變形后消去x。

方法二:將方程②變形后消去y。

讓學生嘗試著寫出解題過程,請兩位同學上臺展示結果,集體訂正。請做對的同學舉手,全班同學都為自己鼓鼓掌,做對的表示給自己一次祝賀,暫時還沒做對的表示給自己一次鼓勵。[設計意圖:讓學生探索這道過渡性的題目,是遵循了學生的認識規(guī)律,由淺入深,為學習下面這道例題做好準備,同時通過變“陌生人”為“朋友”這一設想過程,也培養(yǎng)了學生的創(chuàng)新意識。]

3、例題探索例5、解方程組:3x-4y=10①

5x6y=42②

師:這道題的x與y的系數有何特點?如何變成“朋友”?

(讓學生思考、分組討論、交流,教師引導并板書解題過程。)

[設計意圖:讓學生通過探討,逐步發(fā)現可以用加減消元法去解較為復雜的二元一次方程組,也讓他們再次體會了消元化歸的數學思想,同時也培養(yǎng)了學生分析問題和解決問題的能力。在整個探討的過程中也增強了學生的信心,學生有了發(fā)現的樂趣和成功的喜悅后,會產生一種想表現自己的欲望。]

4、試一試

學生完成課本第30頁的試一試,讓學生用本節(jié)課的加減消元法和前面例2的代入消元法進行比較,看一看哪種方法更簡便?

(小組之間互相交流,寫出解答過程,并請一些同學談談自己的看法,教師展示兩種解題方法讓學生們進行比較。)

[設計意圖:通過對比兩種方法,使學生更清晰地掌握知識,當學生發(fā)現本節(jié)課的方法比例2的方法更簡便時,學生會產生一種用本節(jié)課的知識去解題的沖動。]

(三)反饋矯正

解方程組:

(給學生提供展現自我才華的機會,以前后兩桌為一個小組進行討論交流,此時可輕聲播放一首鋼琴曲,為學生創(chuàng)造一種輕松和諧的學習氛圍)

讓兩個同學上臺解題,教師巡視,并每一個組選兩名代表檢查本組同學的完成情況和及時幫助有困難的同學,待全班同學完成后,讓臺上這兩位同學試著當一下小老師,為全班同學講解自己所做的題目,教師為評委,進行點評并總結,全班同學為他們鼓掌。

[設計意圖:由于學生人數較多,教師不能兼顧每個學生,所以讓學生自做自講,培養(yǎng)了學生綜合能力的同時,也活躍了課堂氣氛。選代表巡視并幫助有困難的同學,會讓學生感受到老師對他們的重視,這樣就能讓他們主動參與到課堂中來。同時也培養(yǎng)了學生的合作精神和激發(fā)了學生的學習熱情。]

(四)課堂小結:學完這節(jié)課,大家有什么收獲?請同學們談談對這節(jié)課的體會。

[設計意圖:加深對本節(jié)知識的理解和記憶,培養(yǎng)學生歸納、概括能力。]

(五)布置作業(yè):

必做題:課本第31頁的練習。

選做題:

(2)

[設計意圖:進一步鞏固本節(jié)課知識的同時,也給學生留下思考的余地和空間,學生是帶著問題走進課堂,現在又帶著新的問題走出課堂。]

五、板書設計:二元一次方程組的解法(四)

找“朋友”——變“陌生人”為“朋友”——同減異加

例題分析習題分析

[設計意圖:為了更好地突出本節(jié)課的教學重點和讓學生更明確本節(jié)課的教學目標。]