教案是教學(xué)活動中的根本,所以在制定的時候一定要足夠細致,優(yōu)秀的教案可以不斷提升我們的思維邏輯能力,以下是范文社小編精心為您推薦的必修一數(shù)學(xué)教案5篇,供大家參考。
必修一數(shù)學(xué)教案篇1
教材:邏輯聯(lián)結(jié)詞(1)
目的:要求學(xué)生了解復(fù)合命題的意義,并能指出一個復(fù)合命題是有哪些簡單命題與邏輯聯(lián)結(jié)詞,并能由簡單命題構(gòu)成含有邏輯聯(lián)結(jié)詞的復(fù)合命題。
過程:
一、提出課題:簡單邏輯、邏輯聯(lián)結(jié)詞
二、命題的概念:例:125 ① 3是12的約數(shù) ② 0.5是整數(shù) ③
定義:可以判斷真假的語句叫命題。正確的叫真命題,錯誤的叫假命題。
如:①②是真命題,③是假命題
反例:3是12的約數(shù)嗎? x5 都不是命題
不涉及真假(問題) 無法判斷真假
上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。
三、復(fù)合命題:
1.定義:由簡單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題。
2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除
(2)菱形的對角線互相 菱形的對角線互相垂直且菱形的
垂直且平分⑤ 對角線互相平分
(3)0.5非整數(shù)⑥ 非0.5是整數(shù)
觀察:形成概念:簡單命題在加上或且非這些邏輯聯(lián)結(jié)詞成復(fù)合命題。
3.其實,有些概念前面已遇到過
如:或:不等式 x2x60的解集 { x | x2或x3 }
且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }
四、復(fù)合命題的構(gòu)成形式
如果用 p, q, r, s表示命題,則復(fù)合命題的形式接觸過的有以下三種:
即: p或q (如 ④) 記作 pq
p且q (如 ⑤) 記作 pq
非p (命題的否定) (如 ⑥) 記作 p
小結(jié):1.命題 2.復(fù)合命題 3.復(fù)合命題的構(gòu)成形式
必修一數(shù)學(xué)教案篇2
課題名稱
?2.1空間點、直線與平面之間的位置關(guān)系》
科 目
高中數(shù)學(xué)
教學(xué)時間
1課時
學(xué)習(xí)者分析
通過第一章《空間幾何體》的學(xué)習(xí),學(xué)生對于立體幾何已經(jīng)有了初步的認識,能夠識別棱柱、棱錐、棱臺、圓柱、圓錐、圓臺、球,并理解它們的幾何特征。但是這種理解還只是建立在觀察、感知的基礎(chǔ)上的,對于原理學(xué)生是不明確的,所以學(xué)生此時有很強的求知欲,急于想搞清楚為什么;同時學(xué)生經(jīng)過高中一年的學(xué)習(xí),已經(jīng)具備了一定的邏輯推理能力,只是缺乏訓(xùn)練,不夠嚴密,不夠清晰;有一定的自主探究和合作學(xué)習(xí)的能力,但有待提高,并愿意動手并參與分組討論。
教學(xué)目標(biāo)
一、知識與技能
1.理解空間點、直線、平面的概念,知道空間點、直線、平面之間存在什么樣的關(guān)系;
2.記憶三公理三推論,能夠用簡單的語言概括三公理三推論,會用圖形表示三公理三推論,并將其轉(zhuǎn)化成數(shù)學(xué)符號語言;
3. 明確三公理三推論的功能,掌握使用三公理三推論解決立體幾何問題的方法。
二、過程與方法
1.通過自己動手制作模型,直觀地感知空間點、直線與平面之間的位置關(guān)系,以及三公理三推論;
2. 通過思考、討論,發(fā)現(xiàn)三公理三推論的條件和結(jié)論;
3.通過例題的訓(xùn)練,進一步理解三公理三推論,明確三公理三推論的功能。
三、情感態(tài)度與價值觀
1.通過操作、觀察、討論培養(yǎng)對立體幾何的興趣,建立合作的意識;
2.感受立體幾何邏輯體系的嚴密性,培養(yǎng)學(xué)生細心的學(xué)習(xí)品質(zhì)。
教學(xué)重點、難點
1.理解三公理三推論的概念及其內(nèi)涵;
2.使用三公理三推論解決立體幾何問題。
教學(xué)資源
(1)每位同學(xué)準(zhǔn)備兩張硬紙板,其中一張中間用小刀劃條縫,鉛筆三根;
(2)教師自制的多媒體課件。
?2.1空間點、直線與平面之間的位置關(guān)系》教學(xué)過程的描述
教學(xué)活動1
一、導(dǎo)入新課
1. 回憶構(gòu)成平面圖形的基本元素:點、直線。①兩者都是最原始的概念,點沒有大小、面積、厚度,直線是向兩側(cè)無限延伸的;②點用大寫英文字母表示,直線用小寫英文字母表示;③ 如果將點看作元素,則直線是一系列點構(gòu)成的集合,所以點在直線上記作,點不在直線上記作;
2. 提出問題:構(gòu)成空間幾何體有哪些基本元素?(大屏幕出示棱柱、棱錐、棱臺)學(xué)生很快得到答案:點、直線、平面。
3. 引入課題:什么是平面?點、直線、平面之間有什么樣的位置關(guān)系?平面有什么性質(zhì)?這就是我們這堂課要研究的問題。
教學(xué)活動2
二、觀察操作,合作探究
1. 理解平面的概念
平面也是一個最原始的概念,是向四周無限延伸的,沒有邊界。一般用希臘字母、、,…表示平面,或者記為平面abc,平面abcd等等。
2. 明確空間點、直線、平面之間存在的位置關(guān)系
①點與直線;②點與平面;③直線與平面。
3. 探究平面的性質(zhì)
⑴ 公理??
① 學(xué)生操作,研究如何將鉛筆放置到硬紙板內(nèi)
問題一:鉛筆與硬紙板只有一個公共點可以么?
問題二:要將鉛筆放置到硬紙板內(nèi)至少需要幾個公共點?
學(xué)生通過操作,體會到要將鉛筆放置到硬紙板內(nèi),只需將鉛筆上兩點放置到硬紙板內(nèi)。
② 抽象出公理??
問題一:如何用圖形表示公理一?
問題二:要求學(xué)生將公理一表示成數(shù)學(xué)符號的形式;
問題三:公理一有什么功能?
③ 動畫演示公理??
⑵ 公理二
① 學(xué)生操作,研究過空間中三點能確定幾個平面
問題一:若三點共線,能確定幾個平面?
問題二:要確定一個平面,需要三點滿足什么條件?
學(xué)生通過操作,體會公理二所表達的含義。
② 抽象出公理二
問題一:如何用圖形表示公理二?
問題二:要求學(xué)生將公理二表示成數(shù)學(xué)符號的形式;
問題三:還能根據(jù)什么條件確定一個平面?引出三推論。
問題四:公理二及三推論有什么功能?
③ 動畫演示公理二及三推論
⑶ 公理三
① 學(xué)生操作,展示兩個平面只有一個公共點
問題一:兩個平面真的只有一個公共點么?
問題二:這個公共點與這條公共直線有什么關(guān)系?
學(xué)生通過操作,體會公理三所表達的含義。
② 抽象出公理三
問題一:如何用圖形表示公理三?
問題二:要求學(xué)生將公理三表示成數(shù)學(xué)符號的形式;
問題三:公理三有什么功能?
③ 動畫演示公理三
教學(xué)活動3
三、歸納總結(jié),加深理解
⒈ 平面具有無限延展性;
⒉ 公理一有什么功能?條件是什么?
⒊ 公理二有什么功能?條件是什么?
⒋ 公理三有什么功能?條件是什么?
教學(xué)活動4
四、布置作業(yè),課外研討
⒈ 課后練習(xí)p43:1、2、3、4;
⒉ 平面幾何中證明平行四邊形有哪些定理?這些定理在空間中能否成立?說明理由。
必修一數(shù)學(xué)教案篇3
1.點的位置表示:
(1)先取一個點o作為基準(zhǔn)點,稱為原點.取定這個基準(zhǔn)點之后,任何一個點p的位置就由o到p的向量 唯一表示. 稱為點p的位置向量,它表示的是點p相對于點o的位置.
(2)在平面上取定兩個相互垂直的單位向量e1,e2作為基,則 可唯一地分解為 =xe1+ye2的形式,其中x,y是一對實數(shù).(x,y)就是向量 的坐標(biāo),坐標(biāo)唯一 地表示了向量 ,從而也唯一地表示了點p.
2.向量的坐標(biāo):
向量的坐標(biāo)等于它的終點坐標(biāo)減去起點坐標(biāo).
3.基本公式:
(1)前提條件:a(x1,y1),b(x2,y2)為平面直角坐標(biāo)系中的兩點,m(x,y)為線段ab的中點.
(2)公式:
①兩點之間的距離公式|ab|=(x2-x1)2+(y2-y1)2.
②中點坐標(biāo)公式
4.定比分點坐標(biāo)
設(shè)a,b是兩個不同的點,如果點p在直線ab上且 =λ ,則稱λ為點p分有向線段 所成的比.
注意:當(dāng)p在線段ab之間時, , 方向相同,比值λ>0.我們也允許點p在線段ab之外,此時 , 方向相反,比值λ
定比分點坐標(biāo)公式:已知兩點a(x1,y1),b(x2,y2),點p(x,y)分 所成的比為λ.則x=x1+λx21+λ,y=y1+λy21+λ.
重心的坐標(biāo):三角形重心的坐標(biāo)等于三個頂點相應(yīng)坐標(biāo)的算術(shù)平 均值,即x1+x2+x33,y1+y2+y33.
一、中點坐標(biāo)公式的運用
?例1】已知 abcd的兩個頂點坐標(biāo)分別為a(4,2),b(5,7),對角線的交點為e(-3,4),求另外兩個頂點c,d的坐標(biāo).
平行四邊形的對角線互相平分,交點為兩個相對頂點的中點,利用中點公式求.
解:設(shè)c(x1,y1),d(x2,y2).
∵e為ac的中點,
∴-3=x1+42,4=y1+22.
解得x1=-10,y1=6.
又∵e為bd的中點,
∴-3=5+x22,4=7+y22.
解得x2=-11,y2=1.
∴c的坐標(biāo)為(-10,6),d點的坐標(biāo)為(-11,1).
若m(x,y)是a(a,b)與b(c,d)的中點,則x=a+c2,y=b+d2.也可理解為a關(guān)于m的對稱點為b,若求b,則可用變形公式c=2x-a,d=2y-b.
1-1已知矩形abcd的兩個頂點坐標(biāo)是a(-1,3),b(-2,4),若它的對角線交點m在x軸上,求另外兩個頂點c,d的坐標(biāo).
解:如圖,設(shè)點m,c,d的坐標(biāo)分別為(x0,0),(x1,y1),(x2,y2),依題意得
0=y1+32 y1=-3;
0=y2+42 y2=-4;
x0=x1-12 x1=2x0+1;
x0=x2-22 x2=2x0+2.
又∵|ab|2+|bc|2=|ac|2,
∴(-1+2)2+(3-4)2+(-2-2x0-1)2+(4+3)2=(-1-2x0-1)2+(3+3)2.
整理得x0=-5,∴x1=-9,x2=-8
∴點c,d的坐標(biāo)分別為(-9,-3),(-8,-4).
二、距離公式的運用
?例2】已知△abc三個頂點的坐標(biāo)分別為a(4,1),b(-3,2),c(0,5),則△abc的周長為().
a.42 b.82 c.122 d.162
利用兩點間的距離公式直接求解,然后求和.
解析:∵ a(4,1),b(-3,2),c(0,5),
∴|ab|=(-3-4)2+(2-1)2=50=52,
|bc|=[0-(-3)]2+(5-2)2=18=32,
| ac|=(0-4)2+(5-1)2=32=42.
∴△abc的周長為|ab|+|bc|+|ac|
=52+32+42
=122.
答案:c
(1)熟練掌握兩點 間的距離公式,并能靈活運 用.
(2)注意公式的結(jié)構(gòu)特征.若y2=y1,|ab|=(x2-x1)2=|x2-x1|就是數(shù)軸上的兩點間距離公式.
必修一數(shù)學(xué)教案篇4
第一章:空間幾何體
1.1.1柱、錐、臺、球的結(jié)構(gòu)特征
一、教學(xué)目標(biāo)
1.知識與技能
(1)通過實物操作,增強學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法
(1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價值觀
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點、難點
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知
1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
10.現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本p8,習(xí)題1.1 a組第1題。
4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習(xí):課本p7 練習(xí)1、2(1)(2)
課本p8 習(xí)題1.1 第2、3、4題
五、歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容
六、布置作業(yè)
課本p8 練習(xí)題1.1 b組第1題
課外練習(xí) 課本p8 習(xí)題1.1 b組第2題
1.2.1 空間幾何體的三視圖(1課時)
一、教學(xué)目標(biāo)
1.知識與技能
(1)掌握畫三視圖的基本技能
(2)豐富學(xué)生的空間想象力
2.過程與方法
主要通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀
(1)提高學(xué)生空間想象力
(2)體會三視圖的作用
二、教學(xué)重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學(xué)法與教學(xué)用具
1.學(xué)法:觀察、動手實踐、討論、類比
2.教學(xué)用具:實物模型、三角板
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭開課題
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實踐動手作圖
1.講臺上放球、長方體實物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;
2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當(dāng)細心觀察,認識了它的基本結(jié)構(gòu)特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本p10,圖1.2-3)
請同學(xué)們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺的三視圖嗎?
(3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對上述問題的看法。
4.請同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
(三)鞏固練習(xí)
課本p12 練習(xí)1、2 p18習(xí)題1.2 a組1
(四)歸納整理
請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習(xí)
1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
1.2.2 空間幾何體的直觀圖(1課時)
一、教學(xué)目標(biāo)
1.知識與技能
(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。
(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法
學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價值觀
(1)提高空間想象力與直觀感受。
(2)體會對比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動中的應(yīng)用。
二、教學(xué)重點、難點
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學(xué)法與教學(xué)用具
1.學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學(xué)用具:三角板、圓規(guī)
練習(xí)反饋
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導(dǎo)學(xué)生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構(gòu)造出一些點。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點,與學(xué)生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本p15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。
4.平行投影與中心投影
投影出示課本p17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習(xí),課本p16練習(xí)1(1),2,3,4
三、歸納整理
學(xué)生回顧斜二測畫法的關(guān)鍵與步驟
四、作業(yè)
1.書畫作業(yè),課本p17 練習(xí)第5題
2.課外思考 課本p16,探究(1)(2)
1.3.1柱體、錐體、臺體的表面積與體積
一、教學(xué)目標(biāo)
1、知識與技能
(1)通過對柱、錐、臺體的研究,掌握柱、錐、臺的表面積和體積的求法。
(2)能運用公式求解,柱體、錐體和臺全的全積,并且熟悉臺體與術(shù)體和錐體之間的轉(zhuǎn)換關(guān)系。
(3)培養(yǎng)學(xué)生空間想象能力和思維能力。
2、過程與方法
必修一數(shù)學(xué)教案篇5
一、教學(xué)目標(biāo)
1.知識與技能:(1)通過實物操作,增強學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法:
(1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價值觀:
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學(xué)過程
(一)創(chuàng)設(shè)情景,揭示課題
1、由六根火柴最多可搭成幾個三角形?(空間:4個)
2在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?
3、展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體。
問題:請根據(jù)某種標(biāo)準(zhǔn)對以上空間物體進行分類。
(二)、研探新知
空間幾何體:多面體(面、棱、頂點):棱柱、棱錐、棱臺;
旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺、球。
1、棱柱的結(jié)構(gòu)特征:
(1)觀察棱柱的幾何物體以及投影出棱柱的圖片,
思考:它們各自的特點是什么?共同特點是什么?
(學(xué)生討論)
(2)棱柱的主要結(jié)構(gòu)特征(棱柱的概念):
①有兩個面互相平行;②其余各面都是平行四邊形;③每相鄰兩上四邊形的公共邊互相平行。
(3)棱柱的表示法及分類:
(4)相關(guān)概念:底面(底)、側(cè)面、側(cè)棱、頂點。
2、棱錐、棱臺的結(jié)構(gòu)特征:
(1)實物模型演示,投影圖片;
(2)以類似的方法,根據(jù)出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念、分類以及表示。
棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。
棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結(jié)構(gòu)特征:
(1)實物模型演示,投影圖片——如何得到圓柱?
(2)根據(jù)圓柱的概念、相關(guān)概念及圓柱的表示。
4、圓錐、圓臺、球的結(jié)構(gòu)特征:
(1)實物模型演示,投影圖片
——如何得到圓錐、圓臺、球?
(2)以類似的方法,根據(jù)圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示。
5、柱體、錐體、臺體的概念及關(guān)系:
探究:棱柱、棱錐、棱臺都是多面體,它們在結(jié)構(gòu)上有哪些相同點和不同點?三者的關(guān)系如何?當(dāng)?shù)酌姘l(fā)生變化時,它們能否互相轉(zhuǎn)化?
圓柱、圓錐、圓臺呢?
6、簡單組合體的結(jié)構(gòu)特征:
(1)簡單組合體的構(gòu)成:由簡單幾何體拼接或截去或挖去一部分而成。
(2)實物模型演示,投影圖片——說出組成這些物體的幾何結(jié)構(gòu)特征。
(3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。
(三)排難解惑,發(fā)展思維
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
(四)鞏固深化
練習(xí):課本p7練習(xí)1、2;課本p8習(xí)題1.1第1、2、3、4、5題
(五)歸納整理:由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容