教師在寫教案的過程中會對課程內(nèi)容進行一個全面梳理,教案在書寫的時候,我們需要考慮文字表述規(guī)范,下面是范文社小編為您分享的數(shù)學高中教案模板6篇,感謝您的參閱。
數(shù)學高中教案模板篇1
一、課程性質(zhì)與任務
數(shù)學是研究空間形式和數(shù)量關系的科學,是科學和技術的基礎,是人類文化的重要組成部分。
數(shù)學課程是中等職業(yè)學校學生必修的一門公共基礎課。本課程的任務是:使學生掌握必要的數(shù)學基礎知識,具備必需的相關技能與能力,為學習專業(yè)知識、掌握職業(yè)技能、繼續(xù)學習和終身發(fā)展奠定基礎。
二、課程教學目標
1.在九年義務教育基礎上,使學生進一步學習并掌握職業(yè)崗位和生活中所必要的數(shù)學基礎知識。
2.培養(yǎng)學生的計算技能、計算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學思維能力。
3.引導學生逐步養(yǎng)成良好的學習習慣、實踐意識、創(chuàng)新意識和實事求是的科學態(tài)度,提高學生就業(yè)能力與創(chuàng)業(yè)能力。
三、教學內(nèi)容結構
本課程的教學內(nèi)容由基礎模塊、職業(yè)模塊和拓展模塊三個部分構成。
1.基礎模塊是各專業(yè)學生必修的基礎性內(nèi)容和應達到的基本要求,教學時數(shù)為128學時。
2.職業(yè)模塊是適應學生學習相關專業(yè)需要的限定選修內(nèi)容,各學校根據(jù)實際情況進行選擇和安排教學,教學時數(shù)為32~64學時。
3.拓展模塊是滿足學生個性發(fā)展和繼續(xù)學習需要的任意選修內(nèi)容,教學時數(shù)不做統(tǒng)一規(guī)定。
四、教學內(nèi)容與要求
(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)
了解:初步知道知識的含義及其簡單應用。
理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其它相關知識的聯(lián)系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項技能與四項能力)
計算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數(shù)學工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進行處理并提取有關信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關系或圖形、圖示,描述其規(guī)律。
空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據(jù)條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數(shù)學相關問題,作出分析并運用適當?shù)臄?shù)學方法予以解決。
數(shù)學思維能力:依據(jù)所學的數(shù)學知識,運用類比、歸納、綜合等方法,對數(shù)學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
(二)教學內(nèi)容與要求1.基礎模塊(128學時)
第1單元集合(10學時)
第2單元不等式(8學時)
第6單元數(shù)列(10學時)
第7單元平面向量(矢量)(10學時)
第8單元直線和圓的方程(18學時)
第10單元概率與統(tǒng)計初步(16學時)
2.職業(yè)模塊
第2單元坐標變換與參數(shù)方程(12學時)
數(shù)學高中教案模板篇2
教學目標:
(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.
(2)進一步理解曲線的方程和方程的曲線.
(3)初步掌握求曲線方程的方法.
(4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉化的能力.
教學重點、難點:求曲線的方程.
教學用具:計算機.
教學方法:啟發(fā)引導法,討論法.
教學過程:
?引入】
1.提問:什么是曲線的方程和方程的曲線.
學生思考并回答.教師強調(diào).
2.坐標法和解析幾何的意義、基本問題.
對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程.
(2)通過方程,研究平面曲線的性質(zhì).
事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.
?問題】
如何根據(jù)已知條件,求出曲線的方程.
?實例分析】
例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.
首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.
解法一:易求線段 的中點坐標為(1,3),
由斜率關系可求得l的斜率為
于是有
即l的方程為
①
分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?
(通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據(jù)就是定義中的兩條).
證明:(1)曲線上的點的坐標都是這個方程的解.
設 是線段 的垂直平分線上任意一點,則
即
將上式兩邊平方,整理得
這說明點 的坐標 是方程 的解.
(2)以這個方程的解為坐標的點都是曲線上的點.
設點 的坐標 是方程①的任意一解,則
到 、 的距離分別為
所以 ,即點 在直線 上.
綜合(1)、(2),①是所求直線的方程.
至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:
解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合
由兩點間的距離公式,點所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想.因此是個好方法.
讓我們用這個方法試解如下問題:
例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.
分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.
求解過程略.
?概括總結】通過學生討論,師生共同總結:
分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:
首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:
(1)建立適當?shù)淖鴺讼?,用有序實?shù)對例如 表示曲線上任意一點 的坐標;
(2)寫出適合條件 的點 的集合
;
(3)用坐標表示條件 ,列出方程 ;
(4)化方程 為最簡形式;
(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.
一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.
上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.
下面再看一個問題:
例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.
?動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關系.
解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合
由距離公式,點 適合的條件可表示為
①
將①式 移項后再兩邊平方,得
化簡得
由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.
?練習鞏固】
題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.
分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為、 ,則 的坐標為 , 的坐標為 .
根據(jù)條件 ,代入坐標可得
化簡得
①
由于題目中要求點 在三角形內(nèi),所以 ,在結合①式可進一步求出 、 的范圍,最后曲線方程可表示為
?小結】師生共同總結:
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?
?作業(yè)】課本第72頁練習1,2,3;
數(shù)學高中教案模板篇3
[學習目標]
(1)會用坐標法及距離公式證明cα+β;
(2)會用替代法、誘導公式、同角三角函數(shù)關系式,由cα+β推導cα—β、sα±β、tα±β,切實理解上述公式間的關系與相互轉化;
(3)掌握公式cα±β、sα±β、tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學習重點]
兩角和與差的正弦、余弦、正切公式
[學習難點]
余弦和角公式的推導
[知識結構]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎。其公式的證明是用坐標法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當α、β中有一個是的整數(shù)倍時,應首選誘導公式進行變形。注意兩角和與差的三角函數(shù)是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數(shù)的特例。
4、關于公式的正用、逆用及變用
數(shù)學高中教案模板篇4
一、教學目標
1.知識與技能
(1)掌握畫三視圖的基本技能
(2)豐富學生的空間想象力
2.過程與方法
主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀
(1)提高學生空間想象力
(2)體會三視圖的作用
二、教學重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學法與教學用具
1.學法:觀察、動手實踐、討論、類比
2.教學用具:實物模型、三角板
四、教學思路
(一)創(chuàng)設情景,揭開課題
“橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。
在初中,我們已經(jīng)學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實踐動手作圖
1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;
2.教師引導學生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。
作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉化。
(1)投影出示圖片(課本p10,圖1.2-3)
請同學們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺的三視圖嗎?
(3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。
4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。
(三)鞏固練習
課本p12練習1、2p18習題1.2a組1
(四)歸納整理
請學生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習
1.自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
數(shù)學高中教案模板篇5
?考綱要求】
了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質(zhì)。
?自學質(zhì)疑】
1.雙曲線 的 軸在 軸上, 軸在 軸上,實軸長等于 ,虛軸長等于 ,焦距等于 ,頂點坐標是 ,焦點坐標是 ,
漸近線方程是 ,離心率 ,若點 是雙曲線上的點,則 , 。
2.又曲線 的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是
3.經(jīng)過兩點 的雙曲線的標準方程是 。
4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。
5.與雙曲線 有公共的漸近線,且經(jīng)過點 的雙曲線的方程為
?例題精講】
1.雙曲線的離心率等于 ,且與橢圓 有公共焦點,求該雙曲線的方程。
2.已知橢圓具有性質(zhì):若 是橢圓 上關于原點對稱的兩個點,點 是橢圓上任意一點,當直線 的斜率都存在,并記為 時,那么 之積是與點 位置無關的定值,試對雙曲線 寫出具有類似特性的性質(zhì),并加以證明。
3.設雙曲線 的半焦距為 ,直線 過 兩點,已知原點到直線 的距離為 ,求雙曲線的離心率。
?矯正鞏固】
1.雙曲線 上一點 到一個焦點的距離為 ,則它到另一個焦點的距離為 。
2.與雙曲線 有共同的漸近線,且經(jīng)過點 的雙曲線的一個焦點到一條漸近線的距離是 。
3.若雙曲線 上一點 到它的右焦點的距離是 ,則點 到 軸的距離是
4.過雙曲線 的左焦點 的直線交雙曲線于 兩點,若 。則這樣的直線一共有 條。
?遷移應用】
1. 已知雙曲線 的焦點到漸近線的距離是其頂點到漸近線距離的2倍,則該雙曲線的離心率
2. 已知雙曲線 的焦點為 ,點 在雙曲線上,且 ,則點 到 軸的距離為 。
3. 雙曲線 的焦距為
4. 已知雙曲線 的一個頂點到它的一條漸近線的距離為 ,則
5. 設 是等腰三角形, ,則以 為焦點且過點 的雙曲線的離心率為 .
6. 已知圓 。以圓 與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件的雙曲線的標準方程為
數(shù)學高中教案模板篇6
教學目標:
1.理解流程圖的選擇結構這種基本邏輯結構.
2.能識別和理解簡單的框圖的功能.
3. 能運用三種基本邏輯結構設計流程圖以解決簡單的問題.
教學方法:
1. 通過模仿、操作、探索,經(jīng)歷設計流程圖表達求解問題的過程,加深對流程圖的感知.
2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構.
教學過程:
一、問題情境
1.情境:
某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學生活動
學生討論,教師引導學生進行表達.
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構數(shù)學
1.選擇結構的概念:
先根據(jù)條件作出判斷,再決定執(zhí)行哪一種
操作的結構稱為選擇結構.
如圖:虛線框內(nèi)是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行.
2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判
斷的不同情況進行不同的操作,這類問題的實現(xiàn)就要用到選擇結構的設計;
(2)選擇結構也稱為分支結構或選取結構,它要先根據(jù)指定的條件進行判斷,再由判斷的結果決定執(zhí)行兩條分支路徑中的某一條;
(3)在上圖的選擇結構中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)
行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和
兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?