在寫教案之前,一定要對教學(xué)目標做出分析,與時俱進是我們在寫教案的時候要注意有的,以下是范文社小編精心為您推薦的初中教案數(shù)學(xué)最新7篇,供大家參考。
初中教案數(shù)學(xué)篇1
一、教學(xué)目標
1、了解二次根式的意義;
2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;
5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
二、教學(xué)重點和難點
重點:
(1)二次根的意義;
(2)二次根式中字母的取值范圍。
難點:確定二次根式中字母的取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結(jié)合。
四、教學(xué)過程
(一)復(fù)習(xí)提問
1、什么叫平方根、算術(shù)平方根?
2、說出下列各式的意義,并計算
(二)引入新課
新課:二次根式
定義:式子叫做二次根式。
對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
(2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”。請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
例1當(dāng)a為實數(shù)時,下列各式中哪些是二次根式?
例2 x是怎樣的實數(shù)時,式子在實數(shù)范圍有意義?
解:略。
說明:這個問題實質(zhì)上是在x是什么數(shù)時,x—3是非負數(shù),式子有意義。
例3當(dāng)字母取何值時,下列各式為二次根式:
分析:由二次根式的定義,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當(dāng)a、b為任意實數(shù)時,是二次根式。
(2)—3x≥0,x≤0,即x≤0時,是二次根式。
(3)且x≠0,∴x>0,當(dāng)x>0時,是二次根式。
(4)即,故x—2≥0且x—2≠0,∴x>2、當(dāng)x>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何實數(shù)時都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。
(4)由—b2≥0得b2≤0,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
初中教案數(shù)學(xué)篇2
教學(xué)目的:
(一)知識點目標:
1.了解正數(shù)和負數(shù)在實際生活中的應(yīng)用。
2.深刻理解正數(shù)和負數(shù)是反映客觀世界中具有相反意義的理。
3.進一步理解0的特殊意義。
(二)能力訓(xùn)練目標:
1.體會數(shù)學(xué)符號與對應(yīng)的思想,用正、負數(shù)表示具有相反意義的量。
2.熟練地用正、負數(shù)表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯(lián)系實際,激發(fā)學(xué)生學(xué)好數(shù)學(xué)的熱情。
教學(xué)重點:能用正、負數(shù)表示具有相反意義的量。
教學(xué)難點:進一步理解負數(shù)、數(shù)0表示的量的意義。
教學(xué)方法:小組合作、師生互動。
教學(xué)過程:
創(chuàng)設(shè)問題情境,引入新課:分小組派代表,注意數(shù)學(xué)語言規(guī)范。
1.認真想一想,你能用學(xué)過的知識解決下列問題嗎?
某零件的直徑在圖紙上注明是 ,單位是毫米,這樣標注表示零件直徑的標準尺寸是 毫米,加工要求直徑可以是 毫米,最小可以是 毫米。
2.下列說法中正確的( )
a、帶有“一”的數(shù)是負數(shù); b、0℃表示沒有溫度;
c、0既可以看作是正數(shù),也可以看作是負數(shù)。
d、0既不是正數(shù),也不是負數(shù)。
[師]這節(jié)課我們就來繼續(xù)認識正、負數(shù)及它們在生活中的實際意義,特別是數(shù)0。
講授新課:
例1. 仔細找一找,找了具有相反意義的量:
甲隊勝5場;零下6度;向南走50米;運進糧食40噸;乙隊負4場;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一個月內(nèi),小明的體重增加2千克,小華體重減少1千克,小強體重?zé)o變化,寫出他們這個月的體重增長值;
(2)2001年下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,法國減少2.4%,
英國減少3.5%,意大利增長0.2%,中國增長7.5%。
寫出這些國家2001年商品進出口總額的增長率。
例3. 下列各數(shù)中,哪些是正數(shù),哪些是負數(shù)?哪些是正整數(shù),哪些是負整數(shù)?哪些是正分數(shù)(小數(shù)),哪些是負分數(shù)(小數(shù))?
例4. 小紅從阿地出發(fā)向東走了3千米,記作+3千米,接著她又向西走3千米,那么小紅距阿地多少千米?
復(fù)習(xí)鞏固:練習(xí):課本p6 練習(xí)
課時小結(jié):這節(jié)課我們學(xué)習(xí)了哪些知識?你能說一說嗎?
課后作業(yè):課本p7習(xí)題1.1 的第3、6、7、8題。
活動與探究:海邊的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潛水艇在海平面下30米處,現(xiàn)以海邊堤岸為基準,將其記為0米,那么附近建筑物及潛水艇的高度各應(yīng)如何表示?
課后反思:————
初中教案數(shù)學(xué)篇3
教學(xué)目標
1.知識與技能
能運用運算律探究去括號法則,并且利用去括號法則將整式化簡.
2.過程與方法
經(jīng)歷類比帶有括號的有理數(shù)的運算,發(fā)現(xiàn)去括號時的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學(xué)生觀察、分析、歸納能力.
3.情感態(tài)度與價值觀
培養(yǎng)學(xué)生主動探究、合作交流的意識,嚴謹治學(xué)的學(xué)習(xí)態(tài)度.
重、難點與關(guān)鍵
1.重點:去括號法則,準確應(yīng)用法則將整式化簡.
2.難點:括號前面是“-”號去括號時,括號內(nèi)各項變號容易產(chǎn)生錯誤.
3.關(guān)鍵:準確理解去括號法則.
教具準備
投影儀.
教學(xué)過程
一、新授
利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?
現(xiàn)在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為
100t+120(t-0.5)千米①
凍土地段與非凍土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都帶有括號,它們應(yīng)如何化簡?
思路點撥:教師引導(dǎo),啟發(fā)學(xué)生類比數(shù)的運算,利用分配律.學(xué)生練習(xí)、交流后,教師歸納:
利用分配律,可以去括號,合并同類項,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我們知道,化簡帶有括號的整式,首先應(yīng)先去括號.
上面兩式去括號部分變形分別為:
+120(t-0.5)=+120t-60③
-120(t-0.5)=-120+60④
比較③、④兩式,你能發(fā)現(xiàn)去括號時符號變化的規(guī)律嗎?
思路點撥:鼓勵學(xué)生通過觀察,試用自己的語言敘述去括號法則,然后教師板書(或用屏幕)展示:
如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;
如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反.
特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).
利用分配律,可以將式子中的括號去掉,得:
+(x-3)=x-3(括號沒了,括號內(nèi)的每一項都沒有變號)
-(x-3)=-x+3(括號沒了,括號內(nèi)的每一項都改變了符號)
去括號規(guī)律要準確理解,去括號應(yīng)對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;另外,括號內(nèi)原有幾項去掉括號后仍有幾項.
二、范例學(xué)習(xí)
例1.化簡下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路點撥:講解時,先讓學(xué)生判定是哪種類型的去括號,去括號后,要不要變號,括號內(nèi)的每一項原來是什么符號?去括號時,要同時去掉括號前的符號.為了防止錯誤,題(2)中-3(a2-2b),先把3乘到括號內(nèi),然后再去括號.
解答過程按課本,可由學(xué)生口述,教師板書.
例2.兩船從同一港口同時出發(fā)反向而行,甲船順水,乙船逆水,兩船在靜水中的速度都是50千米/時,水流速度是a千米/時.
(1)2小時后兩船相距多遠?
(2)2小時后甲船比乙船多航行多少千米?
教師操作投影儀,展示例2,學(xué)生思考、小組交流,尋求解答思路.
思路點撥:根據(jù)船順水航行的速度=船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時,乙船速度為(50-a)千米/時,2小時后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時出發(fā)反向而行,所以兩船相距等于甲、乙兩船行程之和.
解答過程按課本.
去括號時強調(diào):括號內(nèi)每一項都要乘以2,括號前是負因數(shù)時,去掉括號后,括號內(nèi)每一項都要變號.為了防止出錯,可以先用分配律將數(shù)字2與括號內(nèi)的各項相乘,然后再去括號,熟練后,再省去這一步,直接去括號.
三、鞏固練習(xí)
1.課本第68頁練習(xí)1、2題.
2.計算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路點撥:一般地,先去小括號,再去中括號.
四、課堂小結(jié)
去括號是代數(shù)式變形中的一種常用方法,去括號時,特別是括號前面是“-”號時,括號連同括號前面的“-”號去掉,括號里的各項都改變符號.去括號規(guī)律可以簡單記為“-”變“+”不變,要變?nèi)甲?當(dāng)括號前帶有數(shù)字因數(shù)時,這個數(shù)字要乘以括號內(nèi)的每一項,切勿漏乘某些項.
五、作業(yè)布置
1.課本第71頁習(xí)題2.2第2、3、5、8題.
2.選用課時作業(yè)設(shè)計.
初中教案數(shù)學(xué)篇4
學(xué)習(xí)目標:
1、經(jīng)歷角的折疊過程探索角的對稱性,并發(fā)現(xiàn)角平分線的性質(zhì)和判定點在一個角的平分線上的方法;
2、會運用角平分線的性質(zhì)定理解決生活中的相關(guān)問題;
3、在“操作—探究—歸納—說理”的過程中學(xué)會有條理地思考和表達,提高演繹推理能力。
重點、難點:運用角平分線的性質(zhì)定理解決生活中的相關(guān)問題
學(xué)習(xí)過程
一.【預(yù)學(xué)提綱】初步感知、激發(fā)興趣
1、在一張薄紙上任意畫一個角(∠aob ),折紙,使兩邊oa、ob重合,你發(fā)現(xiàn)折痕與∠aob有什么關(guān)系?
2、在∠aob的內(nèi)部任意取折痕上的一點p,分別畫點p到oa和ob的垂線段pc和pd,再沿原折痕重新折疊,由此你能發(fā)現(xiàn)角平分線上的點有什么性質(zhì)?
二.【預(yù)學(xué)練習(xí)】初步運用、生成問題
1、角是軸對稱圖形嗎?若是,對稱軸是什么?
2、下列圖形中,不是軸對稱圖形的是 ( )
a. 兩條相交直線 b. 線段
c.有公共端點的兩條相等線段 d.有公共端點的兩條不相等線段
三.【新知探究】師生互動、揭示通法
問題 1:你知道角平分線有什么性質(zhì)嗎?由【預(yù)習(xí)指導(dǎo)】2,你得到什么結(jié)論?
1、(1)畫∠aob,折紙使oa、ob重合,折痕與∠aob有什么關(guān)系
(2)在折痕上任取一點p,作pd⊥oa,pe⊥ob,垂足為d、e,那么pd與
pe有什么關(guān)系?
結(jié)論: 。
2、在上面第二個結(jié)論中,有兩個條件(1)oc是∠aob的平分線; (2)點p在oc上,pd⊥oa,pe⊥ob,才能得出pd=pe,兩者缺一不可.下圖中pd=pe嗎?各缺少了什么條件?
問題 2:討論:點p在∠aob的平分線上,那么點p到oa、ob的
距離相等;反過來,你能得到什么猜想?
得出結(jié)論:
驗證:課本p20討論;
小試牛刀:
問題 3:任意畫∠o,在∠o的兩邊上分別截取
oa、ob,使oa=ob,過點a畫oa的垂線,過點
b畫ob的垂線,設(shè)兩條垂線相交于點p(如圖),
點o在∠apb的平分線上嗎?為什么?
解:點o ∠apb的平分線上。
因為 ,且 ,]
即點o到的兩邊的距離 ,所以點o
∠apb的平分線上。
理由是:
四. 【解疑助學(xué)】生生互動、突出重點
1、畫一畫:已知∠aob和c、d兩點,請在圖中
標出一點e,使得點e到oa、ob的距離相等,
而且e點到c、d的距離也相等。
1、如圖,直線a,b,c表示三條相互交叉的
公路,現(xiàn)要建一貨物中轉(zhuǎn)站,要求它到三條公路
的距離相等,可供選擇的地址有幾處?如何選?
五.【變式拓展】能力提升、突破難點
1、如圖,op是∠aob的平分線,c是op上一點,
ce⊥oa于點e,cf⊥ob于點f,ce=6?,
cf= ?,理由是 。
2、如圖,ad平分bac,∠c=90°,de⊥ab,那么
(1)de和dc相等嗎?為什么?(2)ae和ac相等嗎?為什么?
六.【回扣目標】學(xué)有所成、悟出方法
角的對稱軸是什么?角平分線有什么性質(zhì)。
初中教案數(shù)學(xué)篇5
一、教學(xué)內(nèi)容分析
1.2有理數(shù)1.2.2數(shù)軸。這一節(jié)是初中數(shù)學(xué)中非常重要的內(nèi)容,從知識上講,數(shù)軸是數(shù)學(xué)學(xué)習(xí)和研究的重要工具,它主要應(yīng)用于絕對值概念的理解,有理數(shù)運算法則的推導(dǎo),及不等式的求解。同時,也是學(xué)習(xí)直角坐標系的基礎(chǔ),從思想方法上講,數(shù)軸是數(shù)形結(jié)合的起點,而數(shù)形結(jié)合是學(xué)生理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法。日常生活中帶見的用溫度計度量溫度,已為學(xué)習(xí)數(shù)軸概念打下了一定的基礎(chǔ)。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學(xué)習(xí)方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學(xué)生領(lǐng)悟分類思想的基礎(chǔ)。
二、學(xué)生學(xué)習(xí)情況分析
(1)知識掌握上,七年級的學(xué)生剛剛學(xué)習(xí)有理數(shù)中的正負數(shù),對正負數(shù)的概念理解不一定很深刻,許多學(xué)生容易造成知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;
(2)學(xué)生學(xué)習(xí)本節(jié)課的知識障礙。學(xué)生對數(shù)軸概念和數(shù)軸的三要素,學(xué)生不易理解,容易造成畫圖中掉三落四的現(xiàn)象,所以教學(xué)中教師應(yīng)予以簡單明白、深入淺出的分析;
(3)由于七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生的主動性。
三、設(shè)計思想
從學(xué)生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學(xué)的一個重要原則。小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念。教學(xué)中,數(shù)軸的三要素中的每一要素都要認真分析它的作用,使學(xué)生從直觀認識上升到理性認識。直線、數(shù)軸都是非常抽象的數(shù)學(xué)概念,當(dāng)然對初學(xué)者不宜講的過多,但適當(dāng)引導(dǎo)學(xué)生進行抽象的思維活動還是可行的。例如,向?qū)W生提問:在數(shù)軸上對應(yīng)一億萬分之一的點,你能畫出來嗎?它是不是存在等。
四、教學(xué)目標
(一)知識與技能
1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。
(二)過程與方法
1、使學(xué)生受到把實際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識。
2、對學(xué)生滲透數(shù)形結(jié)合的思想方法。
(三)情感、態(tài)度與價值觀
1、使學(xué)生初步了解數(shù)學(xué)來源于實踐,反過來又服務(wù)于實踐的辯證唯物主義觀點。
2、通過畫數(shù)軸,給學(xué)生以圖形美的教育,同時由于數(shù)形的結(jié)合,學(xué)生會得到和諧美的享受。
五、教學(xué)重點及難點
1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。
2、難點:有理數(shù)和數(shù)軸上的點的對應(yīng)關(guān)系。
六、教學(xué)建議
1、重點、難點分析
本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大?。y點是正確理解有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。數(shù)軸的概念包含兩個內(nèi)容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的是,所有的有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的點所表示的數(shù)并不都是有理數(shù)。通過學(xué)習(xí),使學(xué)生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎(chǔ)。
2、知識結(jié)構(gòu)
有了數(shù)軸,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學(xué)問題的研究,數(shù)形結(jié)合是理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法,本課知識要點如下:
定義規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸
三要素原點正方向單位長度
應(yīng)用數(shù)形結(jié)合
七、學(xué)法引導(dǎo)
1、教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法。
2、學(xué)生學(xué)法:動手畫數(shù)軸,動腦概括數(shù)軸的三要素,動手、動腦做練習(xí)。
八、課時安排
1課時
九、教具學(xué)具準備
電腦、投影儀、三角板
十、師生互動活動設(shè)計
講授新課
(出示投影1)
問題1:三個溫度計.其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.(小組討論,交流合作,動手操作)
師:我們能否用類似的圖形表示有理數(shù)呢?
師:這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書課題).
師:與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀
數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下
(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當(dāng)于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當(dāng)于溫度計上0℃以上為正,0℃以下為負);
3.選取適當(dāng)?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
師問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
讓學(xué)生觀察畫好的直線,思考以下問題:
(出示投影2)
(1)原點表示什么數(shù)?
(2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的a點表示什么數(shù)?
原點向左1.5個單位長度的b點表示什么數(shù)?
根據(jù)老師畫圖的步驟,學(xué)生思考在一條水平的直線上都畫出什么?然后歸納出數(shù)軸的定義.
師:在此基礎(chǔ)上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單
位長度的直線叫做數(shù)軸.
進而提問學(xué)生:在數(shù)軸上,已知一點p表示數(shù)-5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么p對應(yīng)的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向?qū)W生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可.
【教法說明】
通過“觀察—類比—思考—概括—表達”展現(xiàn)知識的形成是從感性認識上升到理性認識的過程,讓學(xué)生在獲取知識的過程中,領(lǐng)會數(shù)學(xué)思想和思維方法,并有意識地訓(xùn)練學(xué)生歸納概括和口頭表達能力.
師生同步畫數(shù)軸,學(xué)生概括數(shù)軸三要素,師出示投影,生動手動腦練習(xí)
嘗試反饋,鞏固練習(xí)
(出示投影3).畫出數(shù)軸并表示下列有理數(shù):
1、1.5,-2.2,-2.5,,,0.
2.寫出數(shù)軸上點a,b,c,d,e所表示的數(shù):
請大家回答下列問題:
(出示投影4)
(1)有人說一條直線是一條數(shù)軸,對不對?為什么?
(2)下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?
【教法說明】
此組練習(xí)的目的是鞏固數(shù)軸的概念.
十一、小結(jié)
本節(jié)課要求同學(xué)們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學(xué)們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究.
十二、課后練習(xí)習(xí)題1.2第2題
十三、教學(xué)反思
1、數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學(xué)生易于體驗和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。
2、教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。
3、注意從學(xué)生的知識經(jīng)驗出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。
初中教案數(shù)學(xué)篇6
一、教學(xué)目標
1、知識與技能目標
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、能力與過程目標
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、情感與態(tài)度目標
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
二、教學(xué)重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
三、教學(xué)過程
1、創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題
2、小組探索、歸納法則
(1)教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
①2×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向運動米
2×3=
②-2×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向運動米
-2×3=
③2×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向運動米
2×(-3)=
④(-2)×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向運動米
(-2)×(-3)=
(2)學(xué)生歸納法則
①符號:在上述4個式子中,我們只看符號,有什么規(guī)律?
(+)×(+)=()同號得
(-)×(+)=()異號得
(+)×(-)=()異號得
(-)×(-)=()同號得
②積的絕對值等于。
③任何數(shù)與零相乘,積仍為。
(3)師生共同用文字敘述有理數(shù)乘法法則。
3、運用法則計算,鞏固法則。
(1)教師按課本p75例1板書,要求學(xué)生述說每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為。
(3)學(xué)生做練習(xí),教師評析。
(4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。
初中教案數(shù)學(xué)篇7
一、知識與技能
1.能靈活列反比例函數(shù)表達式解決一些實際問題。
2.能綜合利用物理杠桿知識、反比例函數(shù)的知識解決一些實際問題。
二、過程與方法
1.經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題。
2. 體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系,增強應(yīng)用意識,提高運用代數(shù)方法解決問題的能力。
三、情感態(tài)度與價值觀
1.積極參與交流,并積極發(fā)表意見。
2.體驗反比例函數(shù)是有效地描述物理世界的重要手段,認識到數(shù)學(xué)是解決實際問題和進行交流的重要工具。
教學(xué)重點
掌握從物理問題中建構(gòu)反比例函數(shù)模型。
教學(xué)難點
從實際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運用所學(xué)知識分析物理問題,建立函數(shù)模型,教學(xué)時注意分析過程,滲透數(shù)形結(jié)合的思想。
教具準備
多媒體課件。
教學(xué)過程
一、創(chuàng)設(shè)問題情境,引入新課
活動1
問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用。下面的例子就是其中之一。
在某一電路中,保持電壓不變,電流i(安培)和電阻r(歐姆)成反比例,當(dāng)電阻r=5歐姆時,電流i=2安培。
(1)求i與r之間的函數(shù)關(guān)系式;
(2)當(dāng)電流i=0.5時,求電阻r的值。
設(shè)計意圖:
運用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力。
師生行為:
可由學(xué)生獨立思考,領(lǐng)會反比例函數(shù)在物理學(xué)中的綜合應(yīng)用。
教師應(yīng)給“學(xué)困生”一點物理學(xué)知識的引導(dǎo)。
師:從題目中提供的信息看變量i與r之間的反比例函數(shù)關(guān)系,可設(shè)出其表達式,再由已知條件(i與r的一對對應(yīng)值)得到字母系數(shù)k的值。
生:(1)解:設(shè)i=kr ∵r=5,i=2,于是
2=k5 ,所以k=10,∴i=10r 。
(2) 當(dāng)i=0.5時,r=10i=100.5 =20(歐姆)。
師:很好!“給我一個支點,我可以把地球撬動?!边@是哪一位科學(xué)家的名言?這里蘊涵著什么 樣的原理呢?
生:這是古希臘科學(xué)家阿基米德的名言。
師:是的。公元前3世紀,古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;
阻力×阻力臂=動力×動力臂(如下圖)
下面我們就來看一例子。
二、講授新課
活動2
小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米。
(1)動力f與動力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動力臂為1.5米時,撬動石頭至少需要多大的力?
(2)若想使動力f不超過題(1)中所用力的一半,則動力臂至少要加長多少?
設(shè)計意圖:
物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系。因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用。
師生行為:
先由學(xué)生根據(jù)“杠桿定律”解決上述問題。
教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系。
教師在此活動中應(yīng)重點關(guān)注:
①學(xué)生能否主動用“杠桿定律”中杠桿平衡的條件去理解實際問題,從而建立與反比例函數(shù)的關(guān)系;
②學(xué)生能否面對困難,認真思考,尋找解題的途徑;
③學(xué)生能否積極主動地參與數(shù)學(xué)活動,對數(shù)學(xué)和物理有著濃厚的興趣。
師:“撬動石頭”就意味著達到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題。
生:解:(1)根據(jù)“杠桿定律” 有
fl=1200×0.5,得f =600l
當(dāng)l=1.5時,f=6001.5 =400。
因此,撬動石頭至少需要400牛頓的力。
(2)若想使動力f不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有
fl=600,
l=600f 。
當(dāng)f=400×12 =200時,
l=600200 =3。
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米。
生:也可用不等式來解,如下:
fl=600,f=600l 。
而f≤400×12 =200時。
600l ≤200
l≥3。
所以l-1.5≥3-1.5=1.5。
即若想用力不超過400牛頓的一半,則動力臂至少要加長1.5米。
生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出。
師:很棒!請同學(xué)們下去親自畫出圖象完成,現(xiàn)在請同學(xué)們思考下列問題:
用反比例函數(shù)的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?
生:因為阻力和阻力臂不變,設(shè)動力臂為l,動力為f,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得fl=k,即f=kl (k為常數(shù)且k>0)
根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>o時,在第一象限f隨l的增大而減小,即動力臂越長越省力。
師:其實反比例函數(shù)在實際運用中非常廣泛。例如在解決經(jīng)濟預(yù)算問題中的應(yīng)用。
活動3
問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調(diào)至0.55~0.75元之間,經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例。又當(dāng)x=0.65元時,y=0.8。(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價0.3元,電價調(diào)至0.6元,請你預(yù)算一下本年度電力部門的純收人多少?
設(shè)計意圖:
在生活中各部門,經(jīng)常遇到經(jīng)濟預(yù)算等問題,有時關(guān)系到因素之間是反比例函數(shù)關(guān)系,對于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進而用函數(shù)關(guān)系式解決一個具體問題。
師生行為:
由學(xué)生先獨立思考,然后小組內(nèi)討論完成。
教師應(yīng)給予“學(xué)困生”以一定的幫助。
生:解:(1)∵y與x -0.4成反比例,
∴設(shè)y=kx-0.4 (k≠0)。
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8。
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數(shù)關(guān)系為y=15x-2
(2)根據(jù)題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個變量,于是可設(shè)出表達式,再由題目的條件x=0.65時,y=0.8得出字母系數(shù)的值;
(2)純收入=總收入-總成本。
三、鞏固提高
活動4
一定質(zhì)量的二氧化碳氣體,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時二氧化碳氣體的體積v的值。
設(shè)計意圖:
進一步體現(xiàn)物理和反比例函數(shù)的關(guān)系。
師生行為
由學(xué)生獨立完成,教師講評。
師:若要求出ρ=1.1 kg/m3時,v的值,首先v和ρ的函數(shù)關(guān)系。
生:v和ρ的反比例函數(shù)關(guān)系為:v=990ρ 。
生:當(dāng)ρ=1.1kg/m3根據(jù)v=990ρ ,得
v=990ρ =9901.1 =900(m3)。
所以當(dāng)密度ρ=1. 1 kg/m3時二氧化碳氣體的氣體為900m3。
四、課時小結(jié)
活動5
你對本節(jié)內(nèi)容有哪些認識?重點掌握利用函數(shù)關(guān)系解實際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得。
設(shè)計意圖:
這種形式的小結(jié),激發(fā)了學(xué)生的主動參與意識,調(diào)動了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗機會,并為程度不同的學(xué)生提供了充分展示自己的機會,尊重學(xué)生的個體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實效性。
師生行為:
學(xué)生可分小組活動,在小組內(nèi)交流收獲, 然后由小組代表在全班交流。
教師組織學(xué)生小結(jié)。
反比例函數(shù)與現(xiàn)實生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ)。用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系。
板書設(shè)計
17.2 實際問題與反比例函數(shù)(三)
1.
2.用反比例函數(shù)的知識解釋:在我們使 用撬棍時,為什么動 力臂越長越省力?
設(shè)阻力為f1,阻力臂長為l1,所以f1×l1=k(k為常數(shù)且k>0)。動力和動力臂分別為f,l。則根據(jù)杠桿定理,
fl=k 即f=kl (k>0且k為常數(shù))。
由此可知f是l的反比例函數(shù),并且當(dāng)k>0時,f隨l的增大而減小。
活動與探究
學(xué)校準備在校園內(nèi)修建一個矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示。
(1)綠化帶面積是多少?你能寫出這一函數(shù)表達式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?
x(m) 10 20 30 40
y(m)
過程:點a(40,10)在反比例函數(shù)圖象上說明點a的橫縱坐標滿足反比例函數(shù)表達式,代入可求得反比例函數(shù)k的值。
結(jié)果:(1)綠化帶面積為10×40=400(m2)
設(shè)該反比例函數(shù)的表達式為y=kx ,
∵圖象經(jīng)過點a(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400。
∴函數(shù)表達式為y=400x 。
(2)把x=10,20,30,40代入表達式中,求得y分別為40,20,403 ,10。從圖中可以看出。若長不超過40m,則它的寬應(yīng)大于等于10m。