教案寫好能較好的提高老師們的上課質(zhì)量,優(yōu)秀的教案可以促進(jìn)學(xué)生素質(zhì)的提高和發(fā)展,以下是范文社小編精心為您推薦的二次根式教案6篇,供大家參考。
二次根式教案篇1
課題:二次根式
教學(xué)目標(biāo) 1、知識(shí)與技能
理解a(a≥0)是一個(gè)非負(fù)數(shù), (a≥0)
2、過程與方法
(1)數(shù)學(xué)思考:學(xué)會(huì)獨(dú)立思考、體會(huì)數(shù)學(xué)的體驗(yàn)歸納、類比的思想
方法
(2) 問題解決:能夠利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)計(jì)算,能夠互助
交流合作,分析問題,總結(jié)反思
3、情感、態(tài)度與價(jià)值觀
體驗(yàn)成功的樂趣,鍛煉克服困難的意志,培養(yǎng)嚴(yán)謹(jǐn)
求實(shí)的科學(xué)態(tài)度
教學(xué)重難點(diǎn) 教學(xué)重點(diǎn):二次根式的概念
教學(xué)難點(diǎn):二次根式中根號(hào)下必須為非負(fù)數(shù)
教學(xué)過程
一、課前回顧
(2分鐘)
學(xué)生與老師共同回顧上節(jié)課所學(xué)內(nèi)容,溫故而知新。 什么是二次根式?
二次根式中字母的取值范圍:
①被開方數(shù)大于等于零;
②分母中有字母時(shí),要保證分母不為零。
③多個(gè)條件組合時(shí),應(yīng)用不等式組求解
一、情境引入(3分鐘)
由生活中的實(shí)例引入投影的概念,引起學(xué)生的學(xué)習(xí)興趣
已知下列各正方形的面積,求其邊長(zhǎng)。
二、探究1(10分鐘)
練習(xí)1:
計(jì)算下列各式:
三、探究2(10分鐘)
可以發(fā)現(xiàn)它們有如下規(guī)律:
一般的,二次根式有下列性質(zhì):
練習(xí)2:
典型例題 例1:計(jì)算:
例2:計(jì)算:
達(dá)標(biāo)測(cè)試(5分鐘)
課堂測(cè)試,檢驗(yàn)學(xué)習(xí)結(jié)果
1、判斷題
2、若 ,則x的取值范圍為 ( a )
(a) x≤1 (b) x≥1
(c) 0≤x≤1 (d)一切有理數(shù)
3、計(jì)算
4、化??
5、已知a,b,c為△abc的三邊長(zhǎng),化簡(jiǎn):
這一類問題注意把二次根式的運(yùn)算搭載在三角形三邊之間的關(guān)系這個(gè)知識(shí)點(diǎn)上,特別要應(yīng)用好。
應(yīng)用提高(5分鐘)
能力提升,學(xué)有余力的同學(xué)可以仔細(xì)研究 如圖,p是直角坐標(biāo)系中一點(diǎn)。
(1)用二次根式表示點(diǎn)p到原點(diǎn)o的距離;
(2)如果 求點(diǎn)p到原點(diǎn)o的距離
體驗(yàn)收獲 今天我們學(xué)習(xí)了哪些知識(shí)
二次根式的兩條性質(zhì)。
布置作業(yè) 教材8頁習(xí)題第3、4題。
二次根式教案篇2
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的除法法則及其逆用,最簡(jiǎn)二次根式的概念。
2.內(nèi)容解析
二次根式除法法則及商的算術(shù)平方根的探究,最簡(jiǎn)二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個(gè)二次根式化成最簡(jiǎn)二次根式,是加減運(yùn)算的基礎(chǔ).
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡(jiǎn)二次根式.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
(2)會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算;
(3) 理解最簡(jiǎn)二次根式的概念.
2.目標(biāo)解析
(1)學(xué)生能通過運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;
(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對(duì)簡(jiǎn)單的二次根式進(jìn)行運(yùn)算.
(3)通過觀察二次根式的運(yùn)算結(jié)果,理解最簡(jiǎn)二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡(jiǎn)二次根式.
三、教學(xué)問題診斷分析
本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行.二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡(jiǎn)化運(yùn)算.教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.
四、教學(xué)過程設(shè)計(jì)
1.復(fù)習(xí)提問,探究規(guī)律
問題1二次根式的乘法法則是什么內(nèi)容?化簡(jiǎn)二次根式的一般步驟怎樣?
師生活動(dòng)學(xué)生回答。
?設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.
五、目標(biāo)檢測(cè)設(shè)計(jì)
二次根式教案篇3
目 標(biāo)
1. 熟練地運(yùn)用二次根式的性質(zhì)化簡(jiǎn)二次根式;
2. 會(huì)運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問題;
3. 進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價(jià)值。
教學(xué)設(shè)想
本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識(shí)和綜合運(yùn)用,思路比較復(fù)雜。
教 學(xué) 程序 與 策 略
一、預(yù)習(xí)檢測(cè):
1.解決節(jié)前問題:
如圖,架在消防車上的云梯ab長(zhǎng)為15m,ad:bd=1 :0.6,云梯底部離地面的距離bc為2m。你能求出云梯的頂端離地面的距離ae嗎?
歸納:
在日常生活和生產(chǎn)實(shí)際中,我們?cè)诮鉀Q一 些問題,尤其是涉及直角三角形邊長(zhǎng)計(jì)算的問題時(shí)經(jīng)常用到二次根式及其運(yùn)算。
二、合作交流:
1、:如圖,扶梯ab的坡比(be與ae的長(zhǎng)度之比)為1:0.8,滑梯cd的坡比為1:1.6,ae= 米,bc= cd。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡(jiǎn),再取近似值,精確到0.01米)
讓學(xué)生有充分的時(shí)間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實(shí)際上是哪些線段的和?哪些線段的長(zhǎng)是已知的?哪些線段的長(zhǎng)是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運(yùn)算?能化簡(jiǎn)嗎?
注意解題格式
教 學(xué) 程 序 與 策 略
三、鞏固練習(xí):
完成課本p17、1,組長(zhǎng)檢查反饋;
四、拓展提高:
1:如圖是一張等腰三角形彩色紙,ac=bc=40cm,將斜邊上的高cd四等分,然后裁出3張寬度相等的長(zhǎng)方形紙條。(1)分別求出3張長(zhǎng)方形紙條的長(zhǎng)度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。
師生共同分析解題思路,請(qǐng)學(xué)生寫出解題過程。
五、課堂小結(jié):
1.談一談:本節(jié)課你有什么收獲?
2.運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問題時(shí)應(yīng)注意的的問題
六、堂堂清
1: 作業(yè)本(2)
2:課本p17頁:第4、5題選做。
二次根式教案篇4
【 學(xué)習(xí)目標(biāo) 】
1、知識(shí)與技能:了解二次根式的概念,能求根號(hào)內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。
2、過程與方法:進(jìn)一步體會(huì)分類討論的數(shù)學(xué)思想。
3、情感、態(tài)度與價(jià)值觀:通過小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。
【 學(xué)習(xí)重難點(diǎn) 】
1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡(jiǎn)單的計(jì)算。
2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。
【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁
【 學(xué)習(xí)流程 】
一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)
學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識(shí),并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。
二、 課堂教學(xué)
(一)合作學(xué)習(xí)階段。
教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對(duì)普遍存在的問題做好記錄。
(二)集體講授階段。(15分鐘左右)
1. 各小組推選代表依次對(duì)課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補(bǔ)充。
2. 教師對(duì)合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。
3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請(qǐng)其他小組幫助解答,解答不了的由教師進(jìn)行解答。
(三)當(dāng)堂檢測(cè)階段
為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對(duì)本節(jié)課進(jìn)行及時(shí)的鞏固,對(duì)學(xué)生進(jìn)行當(dāng)堂檢測(cè),測(cè)試完試卷上交。
(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)
三、 課后作業(yè)(課后作業(yè)見附件2)
教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對(duì)性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。
四、板書設(shè)計(jì)
課題:二次根式(1)
二次根式概念 例題 例題
二次根式性質(zhì)
反思:
二次根式教案篇5
一、教學(xué)目標(biāo)
1。使學(xué)生知道什么是最簡(jiǎn)二次根式,遇到實(shí)際式子能夠判斷是不是最簡(jiǎn)二次根式。
2。使學(xué)生掌握化簡(jiǎn)一個(gè)二次根式成最簡(jiǎn)二次根式的方法。
3。使學(xué)生了解把二次根式化簡(jiǎn)成最簡(jiǎn)二次根式在實(shí)際問題中的應(yīng)用。
二、教學(xué)重點(diǎn)和難點(diǎn)
1。重點(diǎn):能夠把所給的二次根式,化成最簡(jiǎn)二次根式。
2。難點(diǎn):正確運(yùn)用化一個(gè)二次根式成為最簡(jiǎn)二次根式的方法。
三、教學(xué)方法
通過實(shí)際運(yùn)算的例子,引出最簡(jiǎn)二次根式的概念,再通過解題實(shí)踐,總結(jié)歸納化簡(jiǎn)二次根式的方法。
四、教學(xué)手段
利用投影儀。
五、教學(xué)過程
(一)引入新課
提出問題:如果一個(gè)正方形的面積是0。5m2,那么它的邊長(zhǎng)是多少?能不能求出它的近似值?
了。這樣會(huì)給解決實(shí)際問題帶來方便。
(二)新課
由以上例子可以看出,遇到一個(gè)二次根式將它化簡(jiǎn),為解決問題創(chuàng)
這兩個(gè)二次根式化簡(jiǎn)前后有什么不同,這里要引導(dǎo)學(xué)生從兩個(gè)方面考慮,一方面是被開方數(shù)的因數(shù)化簡(jiǎn)后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。
總結(jié)滿足什么樣的條件是最簡(jiǎn)二次根式。即:滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式:
1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。
2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。
例1 指出下列根式中的最簡(jiǎn)二次根式,并說明為什么。
分析:
說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡(jiǎn)二次根式,就是要求化成最簡(jiǎn)二次根式。前面二次根式的運(yùn)算結(jié)果也都是最簡(jiǎn)二次根式。
例2 把下列各式化成最簡(jiǎn)二次根式:
說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點(diǎn),即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡(jiǎn)。
例3 把下列各式化簡(jiǎn)成最簡(jiǎn)二次根式:
說明:
1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點(diǎn),即被開方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡(jiǎn)。
2。要提問學(xué)生
問題,通過這個(gè)小題使學(xué)生明確如何使用化簡(jiǎn)中的條件。
通過例2、例3總結(jié)把一個(gè)二次根式化成最簡(jiǎn)二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。
注意:
①化簡(jiǎn)時(shí),一般需要把被開方數(shù)分解因數(shù)或分解因式。
②當(dāng)一個(gè)式子的分母中含有二次根式時(shí),一般應(yīng)該把它化簡(jiǎn)成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。
(三)小結(jié)
1。滿足什么條件的根式是最簡(jiǎn)二次根式。
2。把一個(gè)二次根式化成最簡(jiǎn)二次根式的主要方法。
(四)練習(xí)
1。指出下列各式中的最簡(jiǎn)二次根式:
2。把下列各式化成最簡(jiǎn)二次根式:
六、作業(yè)
教材p。187習(xí)題11。4;a組1;b組1。
七、板書設(shè)計(jì)
二次根式教案篇6
活動(dòng)1、提出問題
一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?
問題:10+20是什么運(yùn)算?
活動(dòng)2、探究活動(dòng)
下列3個(gè)小題怎樣計(jì)算?
問題:1)-還能繼續(xù)往下合并嗎?
2)看來二次根式有的能合并,有的不能合并,通過對(duì)以上幾個(gè)題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開方數(shù)相同的進(jìn)行合并。
活動(dòng)3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問題情景,引起學(xué)生思考。
學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。
教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運(yùn)算。
我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗(yàn)證:
①設(shè)=,類比合并同類項(xiàng)或面積法;
②學(xué)生思考,得出先化簡(jiǎn),再合并的解題思路
③先化簡(jiǎn),再合并
學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。
提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。