與實際能力做好結合,才能將教案寫得更有價值,老師們在教案的時候一定要結合課堂的主題,以下是范文社小編精心為您推薦的人教版六年級下冊教案優(yōu)秀5篇,供大家參考。
人教版六年級下冊教案篇1
(1)兩個質數的和是39,這兩個質數的積是( )。
分析 本題考查的是質數的意義及數的奇偶性等知識。
兩個數的和是39,說明這兩個數一個數是奇數,一個數是偶數,因為它們都是質數,所以其中的偶數只能是2,則奇數是39-2=37,37×2=74。
解答 74
(2)120的因數有( )個。
分析 求一個較小數的因數的個數一般用列舉法,但求較大數的因數的個數時,一般用分解質因數法,即先把120分解質因數:120=2×2×2×3×5,然后借助每個因數的個數來計算。因數2的個數是3個,因數3的個數是1個,因數5的個數也是1個,120的因數的個數為(3+1)×(1+1)×(1+1)=16(個)。
解答 16
⊙探究活動
1.課件出示題目。
(1)一個長方體木塊,長2.7 m,寬1.8 m,高1.5 m。要把它切成大小相等的正方體木塊,不許有剩余,正方體的棱長最大是多少分米?
(2)學校六年級有若干名同學排隊做操,3人一行余2人,7人一行余2人,11人一行也余2人。六年級最少有多少人?
2.明確探究要求。(小組合作、思考、交流)
(1)這兩道題分別考查什么知識?
(2)怎樣解決這兩個問題?
(3)具體的解答過程是怎樣的?
3.匯報。
(1)先匯報前兩個問題。
預設
生1:第(1)題考查的是應用因數的知識解決問題的能力。
生2:第(2)題考查的是應用倍數的知識解決問題的能力。
生3:根據題意,正方體的最大棱長應該是長方體長、寬、高的最大公因數,所以先把相關長度轉換單位,用整數表示,然后求長、寬、高的最大公因數。
生4:根據題意,六年級人數比3、7、11的最小公倍數多2,所以先求出3、7、11的最小公倍數,再加2就可以了。
(2)嘗試解答。(關注學生求三個數的最大公因數或最小公倍數的情況,發(fā)現問題并及時點撥)
(3)匯報解答過程。(指名板演,集體訂正)
預設
生1:2.7 m=27 dm,1.8 m=18 dm,1.5 m=15 dm。因為27、18、15的最大公因數是3,所以正方體的棱長最大是3 dm。
生2:因為3、7、11的最小公倍數是3×7×11=231,231+2=233(人),所以六年級最少有233人。
4.小結。
解答此類問題,關鍵要弄清考查的是因數的知識還是倍數的知識,同時要會求兩個或三個數的最大公因數及最小公倍數。
⊙課堂總結
通過本節(jié)課的學習,掌握了因數與倍數的相關知識,我們學會應用這些知識解決實際問題,學以致用。
⊙布置作業(yè)
教材75頁5、9題。
板書設計
因數、倍數、質數、合數
因數和倍數質數——質因數合數——分解質因數1公因數互質數最大公因數倍數——公倍數——最小公倍數能被2、5、3整除的數的特征。
人教版六年級下冊教案篇2
教學內容:
教科書p23-26的內容,p24做一做,完成練習四的第1、2題。
教學目標:
1、認識圓錐,圓錐的高和側面,掌握圓錐的特征,會看圓錐的平面圖,會正確測量圓錐的高,能根據實驗材料正確制作圓錐。
2、過動手制作圓錐和測量圓錐的高,培養(yǎng)學生的動手操作能力和一定的空間想象能力。
3、養(yǎng)學生的自主探索意識,激發(fā)學生強烈的求知欲望。
教學重點:
掌握圓錐的特征。
教學難點:
正確理解圓錐的組成。
教具準備:
每人一個圓錐,師準備一個大的圓錐模型。
教學過程:
一、復習
1、圓柱體積的計算公式是什么?
2、圓柱的特征是什么?
二、新課
1、圓錐的認識 (直觀感受觀察討論匯報)
(1)讓學生拿著圓錐模型觀察和擺弄后,指定幾名學生說出自己觀察的結果,從而使學生認識到圓錐有一個曲面,一個頂點和一個面是圓的,等等。
(2)圓錐有一個頂點,它的底面是一個圓、(在圖上標出頂點,底面及其圓心o)
(3)圓錐有一個曲面,圓錐的這個曲面叫做側面。(在圖上標出側面)
(4)讓學生看著教具,指出:從圓錐的頂點到底面圓心的距離叫做高。 (沿著曲面上的線都不是圓錐的高,由于圓錐只有一個頂點,所以圓錐只有一條高)
2、小結
圓錐的特征(可以啟發(fā)學生總結),強調底面和高的特點,使學生弄清圓錐的特征是:底面是圓,側面是一個曲面,有一個頂點和一條高.
3、測量圓錐的高(組織學生分組進行測量)
由于圓錐的高在它的內部,我們不能直接量出它的長度,這就需要借助一塊平板來測量。
(1)先把圓錐的底面放平;
(2)用一塊平板水平地放在圓錐的頂點上面;
(3)豎直地量出平板和底面之間的距離。
4、教學圓錐側面的展開圖
(1)學生猜想圓錐的側面展開后會是什么圖形呢?
(2)實驗來得出圓錐的側面展開后是一個扇形。
三、課堂練習
1、做第24頁做一做的題目。
讓學生拿出課前準備好的模型紙樣,先做成圓錐,然后讓學生試著獨立量出它的底面直徑.教師行間巡視,對有困難的學生及時輔導。
2、練習四的第1題。
(1)讓學生自由地觀察,只要是接近于圓柱、圓錐的都可以指出。
(2)讓學生說說自己周圍還有哪些物體是由圓柱、圓錐組成的。
3.完成練習四的第2題。
補充習題
1出示一組圖形,辨認指出哪些是圓錐。
2出示一組圖形,指出哪個是圓錐的高。
3出示一組組合圖形,指出是由哪些圖形組成的。
四、總結
關于圓錐你知道了些什么?你能向同學介紹你手中的圓錐嗎?
教學反思:
觀察、感知中認識并掌握圓錐的特點,經歷探究測量圓錐高的方法的過程,加深了對圓錐高的認識。在旋轉,對比圓柱和圓錐的過程中,加深對圓錐特點的認識,發(fā)展學生的思維。
人教版六年級下冊教案篇3
設計意圖
本設計將“悟詞情,品畫意”作為研讀目標,教學中努力體現“課內外聯(lián)系、校內外溝通、學科間融合”的語文教學思想。
1、將音樂引入語文課堂,借助音樂,形象解讀《卜算子?詠梅》一詞。
2、將繪畫引入語文課堂,借助畫面,再現梅之風姿,梅之品格。
3、通過對比閱讀,解讀梅花的兩種形象,詩人的兩種境界。
4、引導學生查找、搜集、拓展閱讀毛澤東其他詩詞,通過組織澤東詩詞朗誦、演唱會,促使學生積累語言,積淀情感。
教學過程
一、背誦導入
我們已經讀過幾首詞了,請同學們把自己喜歡的詞讀或背給大家聽。
二、自-閱讀
今天我們要學習毛澤東的一首詠梅詞。請同學們自己反復地讀讀課文,想想詞中寫了梅花的什么特點,贊揚了梅花怎樣的品格,把自己的感受在空白處寫一寫。
三、交流討論
結合具體詞句,充分交流見解;教師相機點撥,使學生對毛澤東詞中的梅花產生贊嘆之情。
1、從“飛雪”“百丈冰”等詞可以讀出,梅花綻放于最寒冷的時節(jié)。俗話說“冰凍三尺,非一日之寒”,更何況“已是懸崖百丈冰”,可以想象大雪紛飛,天地間了無生機,梅花卻不畏嚴寒,一花獨放。
2、從“俏也不爭春,只把春來報”可以讀出梅是報春的使者,卻不爭春邀寵,居功自傲,表現了梅花謙遜的作風。
3、從“待到山花爛漫時,她在叢中笑”可以讀出百花盛開之時,梅花卻無比欣慰地飄落叢中,表現了梅的豁達與無私。
四、有感情地朗讀、背誦
1、梅花以其樂觀自信、謙虛坦蕩的品格,贏得了毛澤東的贊頌,讓我們再來聽一首贊頌梅花的歌曲(播放《紅梅贊》)。
2、讓我們用自己的朗讀來贊頌梅花吧(學生放聲練習朗讀)。
3、邊讀邊想象畫面,有感情地讀。(引導學生根據課件呈現的音樂和畫面的變化,滿含激昂之情、贊嘆之情地誦讀,教師相機引導示范。對學生富有個性的朗讀給予鼓勵,對學生動情的朗讀給以表揚。)
五、對比閱讀,感悟詩人的情感
1、閱讀陸游詠梅詞,簡介創(chuàng)作背景。
(乾道二年,陸游因“力說張浚用兵”,受到了賣國派的打擊,被罷免了隆興通判的職位。在山陰寂寞地度過了四年,便開始了西行萬里的遠游。作品里風雨交加的黃昏、孤獨綻放的梅花,正是陸游受打擊后心境的寫照。)
毛澤東在讀陸游的詠梅詞后,填詞一首,卻“反其意而用之”,表達了樂觀自信的胸懷。郭沫若在讀了毛澤東的詞后也和詞一首,寫道“曩見梅花愁,今見梅花笑”,鮮明地寫出了兩首詞中梅花的不同形象與兩位詩人的不同心境。
2、再讀毛澤東的詠梅詞,想象“已是懸崖百丈冰,猶有花枝俏”的景象,試著畫一畫,并給自己的畫寫上一個題目(如,寒梅傲雪、春的使者、凌寒獨放、寒梅斗雪、一枝獨秀)。
3、配樂欣賞畫家為毛澤東的詠梅詞所配的畫;有感情地背誦詠梅詞。
六、拓展閱讀
1、課外閱讀毛澤東的其他詩詞。
2、用一周時間進行準備,然后組織一次毛澤東詩詞朗誦、演唱會。
人教版六年級下冊教案篇4
課前準備
教師準備 ppt課件
教學過程
⊙提問導入
1.提問激趣。
根據“甲是乙的”,你能想到什么?
預設
生1:乙是甲的。
生2:甲比乙少,乙比甲多。
生3:甲是甲、乙之差的5倍。
生4:甲是甲、乙之和的。
生5:乙比甲多20%。
……
2.導入新課。
這節(jié)課我們復習用分數和百分數的知識解決問題。[板書課題:解決問題(二)]
⊙回顧與整理
1.分數(百分數)的一般應用題。
(1)分數(百分數)乘法應用題的特征及解題關鍵各是什么?
①特征:已知單位“1”的量和分率,求與分率所對應的實際數量。
②解題關鍵:準確判斷單位“1”的量。找準所求問題對應的分率,然后根據一個數乘分數的意義正確列式。
(2)分數(百分數)除法應用題的特征及解題關鍵各是什么?
①特征:已知一個數和另一個數,求一個數是另一個數的幾分之幾或百分之幾?!耙粋€數”是比較量,“另一個數”是標準量。求分率或百分率,就是求它們的倍數關系。
②解題關鍵:從問題入手,理清把誰看作標準量,也就是把誰看作單位“1”,誰和單位“1”的量作比較,誰就是被除數。
(3)分數(百分數)應用題的常見題型有哪些?如何解答?
①求甲是乙的幾分之幾(百分之幾):甲÷乙。
②求甲比乙多(少)幾分之幾:(甲-乙)÷乙或(乙-甲)÷乙。
③已知甲比乙多(少)幾分之幾,求甲:乙×。
④已知甲比乙多(少)幾分之幾,求乙:甲÷。
⑤求百分率。
發(fā)芽率=×100%
小麥的出粉率=×100%
產品的合格率=×100%
出勤率=×100%
⑥求利息:利息=本金×利率×時間
2.分數應用題的特例——工程問題。
(1)什么是工程問題?
明確:工程問題是探討工作總量、工作效率和工作時間三個數量之間相互關系的一種應用題。
(2)解決工程問題的關鍵是什么?
明確:把工作總量看作單位“1”,工作效率就是工作時間的倒數,然后根據題目的具體情況靈活運用公式解題。
(3)工程問題的數量關系式有哪些?
預設
生1:工作總量=工作效率×工作時間
生2:工作效率=工作總量÷工作時間
生3:工作時間=工作總量÷工作效率
生4:合作時間=工作總量÷工作效率和
人教版六年級下冊教案篇5
教學內容:
比較正數和負數的大小。
教學目的:
1、借助數軸初步學會比較正數、0和負數之間的大小。
2、初步體會數軸上數的順序,完成對數的結構的初步構建。
教學重、難點:
負數與負數的比較。
教學過程:
一、復習:
1、讀數,指出哪些是正數,哪些是負數?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
(一)教學例3:
1、怎樣在數軸上表示數?(1、2、3、4、5、6、7)
2、出示例3:
(1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數對應起來。
(4)學生回答,教師在相應點的下方標出對應的數,再讓學生說說直線上其他幾個點代表的數,讓學生對數軸上的點表示的正負數形成相對完整的認識。
(5)總結:我們可以像這樣在直線上表示出正數、0和負數,像這樣的直線我們叫數軸。
(6)引導學生觀察:
a、從0起往右依次是?從0起往左依次是?你發(fā)現什么規(guī)律?
b、在數軸上除了可以表示整數外,還可以表示分數和小數。請學生在數軸上分別找到1.5和-1.5對應的點。如果從起點分別到1.5和-1.5處,應如何運動?
(7)練習:做一做的第1、2題。
(二)教學例4:
1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數軸上表示出來,并比較他們的大小。
2、學生交流比較的方法。
3、通過小精靈的話,引出利用數軸比較數的大小規(guī)定:在數軸上,從左到右的順序就是數從小到大的順序。
4、再讓學生進行比較,利用學生的具體比較來說明“-8在-6的左邊,所以-8〈-6”
5、再通過讓另一學生比較“8〉6,但是-8〈-6”,使學生初步體會兩負數比較大小時,絕對值大的負數反而小。
6、總結:負數比0小,所有的負數都在0的左邊,也就是負數都比0小,而正數比0大,負數比正數小。
7、練習:做一做第3題。
三、鞏固練習
1、練習一第4、5題。
2、練習一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是 攝氏度。
四、全課總結
(1)在數軸上,從左到右的順序就是數從小到大的順序。
(2)負數比0小,正數比0大,負數比正數小。
第二課教學反思:
許多教師認為“負數”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握??扇绻钊脬@研教材,其實會發(fā)現還有不少值得挖掘的內容可以向學生補充介紹。
例3——兩個不同層面的拓展:
1、在數軸上表示數要求的拓展。
數軸除了可以表示整數,還可以表示小數和分數。教材例3只表示出正、負整數,最后一個自然段要求學生表示出—1.5。建議此處教師補充要求學生表示出“+1.5”的位置,因為這樣便于對比發(fā)現兩個數離原點的距離相等,只不過分別在0的左右兩端,滲透+1.5和—1.5絕對值相等。
同時,還應補充在數軸上表示分數,如—1/3、—3/2等,提升學生數形結合能力,為例4的教學打下夯實的基礎。
2、滲透負數加減法
教材中所呈現的數軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決1;2+1;(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數大小比較的三種類型(正數和負數、0和負數、負數和負數)
例4教材只提出一個大的問題“比較它們的大小”,這些數的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數軸從左到右的順序就是數從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數軸上左邊的數比右邊的數小?!奔词褂袑W生在比較—8和—6大小時是用“8>6,所以—8。