初中數學酸和堿教案參考5篇

時間:2023-10-11 作者:Mute 備課教案

教案可以作為教學過程中的參考文檔,供教師隨時查閱,教案包括了教學資源的清單,如教材、課件和參考書籍,下面是范文社小編為您分享的初中數學酸和堿教案參考5篇,感謝您的參閱。

初中數學酸和堿教案參考5篇

初中數學酸和堿教案篇1

一元一次不等式組

教學目標

1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;

2、理解一元一次不等式組應用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

3、體驗數學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。

教學難點

正確分析實際問題中的不等關系,列出不等式組。

知識重點

建立不等式組解實際問題的數學模型。

探究實際問題

出示教科書第145頁例2(略)

問:(1)你是怎樣理解“不能完成任務”的數量含義的?

(2)你是怎樣理解“提前完成任務”的數量含義的?

(3)解決這個問題,你打算怎樣設未知數?列出怎樣的不等式?

師生一起討論解決例2.

歸納小結

1、教科書146頁“歸納”(略)。

2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?

在討論或議論的基礎上老師揭示:

步法一致(設、列、解、答);本質有區(qū)別。(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。

初中數學酸和堿教案篇2

一、教材分析

本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內角和。

二、教學目標

1、知識目標:了解多邊形內角和公式。

2、數學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。

3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

4、情感態(tài)度目標:通過猜想、推理活動感受數學活動充滿著探索以及數學結論的確定性,提高學生學習熱情。

三、教學重、難點

重點:探索多邊形內角和。

難點:探索多邊形內角和時,如何把多邊形轉化成三角形。

四、教學方法:引導發(fā)現法、討論法

五、教具、學具

教具:多媒體課件

學具:三角板、量角器

六、教學媒體:大屏幕、實物投影

七、教學過程:

(一)創(chuàng)設情境,設疑激思

師:大家都知道三角形的內角和是180,那么四邊形的內角和,你知道嗎?

活動一:探究四邊形內角和。

在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。

方法一:用量角器量出四個角的度數,然后把四個角加起來,發(fā)現內角和是360。

方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現兩個三角形內角和相加是360。

接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。

師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

活動二:探究五邊形、六邊形、十邊形的內角和。

學生先獨立思考每個問題再分組討論。

關注:

(1)學生能否類比四邊形的方式解決問題得出正確的結論。

(2)學生能否采用不同的方法。

學生分組討論后進行交流(五邊形的內角和)

方法1:把五邊形分成三個三角形,3個180的和是540。

方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結果得540。

方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結果得540。

方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結果得540。

師:你真聰明!做到了學以致用。

交流后,學生運用幾何畫板演示并驗證得到的方法。

得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720,十邊形內角和是1440。

(二)引申思考,培養(yǎng)創(chuàng)新

師:通過前面的討論,你能知道多邊形內角和嗎?

活動三:探究任意多邊形的內角和公式。

思考:

(1)多邊形內角和與三角形內角和的關系?

(2)多邊形的邊數與內角和的關系?

(3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?

學生結合思考題進行討論,并把討論后的結果進行交流。

發(fā)現1:四邊形內角和是2個180的和,五邊形內角和是3個180的和,六邊形內角和是4個180的和,十邊形內角和是8個180的和。發(fā)現2:多邊形的邊數增加1,內角和增加180。

發(fā)現3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。

得出結論:多邊形內角和公式:(n-2)·180。

(三)實際應用,優(yōu)勢互補

1、口答:(1)七邊形內角和()

(2)九邊形內角和()

(3)十邊形內角和()

2、搶答:(1)一個多邊形的內角和等于1260,它是幾邊形?

(2)一個多邊形的內角和是1440,且每個內角都相等,則每個內角的度數是()。

3、討論回答:一個多邊形的內角和比四邊形的內角和多540,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?

(四)概括存儲

學生自己歸納總結:

1、多邊形內角和公式

2、運用轉化思想解決數學問題

3、用數形結合的思想解決問題

(五)作業(yè):練習冊第93頁1、2、3

八、教學反思:

1、教的轉變

本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數學問題,體驗發(fā)現的樂趣。

2、學的轉變

學生的角色從學會轉變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。

3、課堂氛圍的轉變

整節(jié)課以“流暢、開放、合作、隱導”為基本特征,教師對學生的思維減少干預,教學過程呈現一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現的價值。

初中數學酸和堿教案篇3

學習目標:

1、進一步理解平均數、中位數和眾數等統(tǒng)計量的統(tǒng)計意義。

2、會計算加權平均數,理解“權”的意義,能選擇適當的統(tǒng)計量表示數據的集中趨勢。

3、會計算極差和方差,理解它們的統(tǒng)計意義,會用它們表示數據的波動情況。

4、會用樣本平均數、方差估計總體的平均數、方差,進一步感受抽樣的必要性,體會用樣本估計總體的思想。

一、知識點回顧

1、數學期末總評成績由作業(yè)分數,課堂參與分數,期考分數三部分組成,并按3:3:4的比例確定。已知小明的期考80分,作業(yè)90分,課堂參與85分,則他的總評成績?yōu)開_______。

2、樣本1、2、3、0、1的平均數與中位數之和等于___.

3、一組數據5,-2,3,x,3,-2,若每個數據都是這組數據的眾數,則這組數據的平均數是.

4、數據1,6,3,9,8的極差是

5、已知一個樣本:1,3,5,x,2,它的平均數為3,則這個樣本的方差是。

二、專題練習

1、方程思想:

例:某次考試a、b、c、d、e這5名學生的平均分為62分,若學生a除外,其余學生的平均得分為60分,那么學生a的得分是_____________.

點撥:本題可以用統(tǒng)計學知識和方程組相結合來解決。

同類題連接:一班級組織一批學生去春游,預計共需費用120元,后來又有2人參加進來,總費用不變,于是每人可以少分攤3元,設原來參加春游的學生x人??闪蟹匠蹋?/p>

2、分類討論法:

例:汶川大地震牽動每個人的心,一方有難,八方支援,5位衢州籍在外打工人員也捐款獻愛心。已知5人平均捐款560元(每人捐款數額均為百元的整數倍),捐款數額最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款數額的中位數,那么其余兩人的捐款數額分別是___________;

點撥:做題過程中要注意滿足的條件。

同類題連接:數據-1 , 3 , 0 , x的極差是5 ,則x =_____.

3、平均數、中位數、眾數在實際問題中的應用

例:某班50人右眼視力檢查結果如下表所示:

視力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5

人數2 2 2 3 3 4 5 6 7 11 5

求該班學生右眼視力的平均數、眾數與中位數.發(fā)表一下自己的看法。

4、方差在實際問題中的應用

例:甲、乙兩名射擊運動員在相同條件下各射靶5次,各次命中的環(huán)數如下:

甲:5 8 8 9 10

乙:9 6 10 5 10

(1)分別計算每人的平均成績;

(2)求出每組數據的方差;

(3)誰的射擊成績比較穩(wěn)定?

三、知識點回顧

1、平均數:

練習:在一次英語口試中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余為84分。已知該班平均成績?yōu)?0分,問該班有多少人?

2、中位數和眾數

練習:1.一組數據23、27、20、18、x、12,它的中位數是21,則x的值是.

2.如果在一組數據中,23、25、28、22出現的次數依次為2、5、3、4次,并且沒有其他的數據,則這組數據的眾數和中位數分別是( )

a.24、25 b.23、24 c.25、25 d.23、25

3.在一次環(huán)保知識競賽中,某班50名學生成績如下表所示:

得分50 60 70 80 90 100 110 120

人數2 3 6 14 15 5 4 1

分別求出這些學生成績的眾數、中位數和平均數.

3.極差和方差

練習:1.一組數據x 、x …x的極差是8,則另一組數據2x +1、2x +1…,2x +1的極差是( )

a. 8 b.16 c.9 d.17

2.如果樣本方差,

那么這個樣本的平均數為.樣本容量為.

四、自主探究

1、已知:1、2、3、4、5、這五個數的平均數是3,方差是2.

則:101、102、103、104、105、的平均數是,方差是。

2、4、6、8、10、的平均數是,方差是。

你會發(fā)現什么規(guī)律?

2、應用上面的規(guī)律填空:

若n個數據x1x2……xn的平均數為m,方差為w。

(1)n個新數據x1+100,x2+100, …… xn+100的平均數是,方差為。

(2)n個新數據5x1,5x2, ……5xn的平均數,方差為。

五、學后反思:

xxx

初中數學酸和堿教案篇4

問題描述:

初中數學教學案例

初中的,隨便那個年級.20xx字.案例和反思

1個回答 分類:數學 20xx-11-30

問題解答:

我來補答

2.3 平行線的性質

一、教材分析:

本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章 第3節(jié) 平行線的性質,它是平行線及直線平行的繼續(xù),是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.

二、教學目標:

知識與技能:掌握平行線的性質,能應用性質解決相關問題.

數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程.

解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神.

情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神.

三、教學重、難點:

重點:平行線的性質

難點:“性質1”的探究過程

四、教學方法:

“引導發(fā)現法”與“動像探索法”

五、教具、學具:

教具:多媒體課件

學具:三角板、量角器.

六、教學媒體:大屏幕、實物投影

七、教學過程:

(一)創(chuàng)設情境,設疑激思:

1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.

2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?

學生活動:

思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;

教師:首先肯定學生的回答,然后提出問題.

問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?

引出課題——平行線的性質.

(二)數形結合,探究性質

1.畫圖探究,歸納猜想

任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).

問題一:指出圖中的同位角,并度量這些角,把結果填入下表:

第一組

第二組

第三組

第四組

同位角

∠1

∠5

角的度數

數量關系

學生活動:畫圖——度量——填表——猜想

結論:兩直線平行,同位角相等.

問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?

學生:探究、討論,最后得出結論:仍然成立.

2.教師用《幾何畫板》課件驗證猜想

3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)

(三)引申思考,培養(yǎng)創(chuàng)新

問題三:請判斷內錯角、同旁內角各有什么關系?

學生活動:獨立探究——小組討論——成果展示.

教師活動:引導學生說理.

因為a‖b 因為a‖b

所以∠1=∠2 所以∠1=∠2

又 ∠1=∠3 又 ∠1+∠4=180°

所以∠2=∠3 所以∠2+∠4=180°

語言敘述:

性質2 兩條直線被第三條直線所截,內錯角相等.

(兩直線平行,內錯角相等)

性質3 兩條直線被第三條直線所截,同旁內角互補.

(兩直線平行,同旁內角互補)

(四)實際應用,優(yōu)勢互補

1.(搶答)

(1)如圖,平行線ab、cd被直線ae所截

①若∠1 = 110°,則∠2 = °.理由:.

②若∠1 = 110°,則∠3 = °.理由:.

③若∠1 = 110°,則∠4 = °.理由:.

(2)如圖,由ab‖cd,可得( )

(a)∠1=∠2 (b)∠2=∠3

(c)∠1=∠4 (d)∠3=∠4

(3)如圖,ab‖cd‖ef,

那么∠bac+∠ace+∠cef=( )

(a) 180°(b)270° (c)360° (d)540°

(4)誰問誰答:如圖,直線a‖b,

如:∠1=54°時,∠2= .

學生提問,并找出回答問題的同學.

2.(討論解答)

如圖是一塊梯形鐵片的殘余部分,量得∠a=100°,

∠b=115°,求梯形另外兩角分別是多少度?

(五)概括存儲(小結)

1.平行線的性質1、2、3;

2.用“運動”的觀點觀察數學問題;

3.用數形結合的方法來解決問題.

(六)作業(yè) 第69頁 2、4、7.

八、教學反思:

①教的轉變:本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發(fā)現結論后,利用幾何畫板直觀地、動態(tài)地展示同位角的關系,激發(fā)學生自覺地探究數學問題,體驗發(fā)現的樂趣.

②學的轉變:學生的角色從學會轉變?yōu)闀W.本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.

③課堂氛圍的轉變:整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現的價值.

初中數學酸和堿教案篇5

生活中的立體圖形:(常見的有)圓柱、圓錐、正方體、長方體、棱柱、球。棱:相鄰兩個面的交線。

側棱:相鄰兩個側面的交線。棱柱的所有側棱長都相等。

底面:棱柱有上、下兩個底面,形狀相同。

側面:棱柱的側面都是平行四邊形。

立體圖形的分類:錐體、柱體、球體。也可分為有曲面、無曲面。還可以分為有頂點、無頂點。

棱柱:分為直棱柱、斜棱柱。直棱柱的側面是長方形。

特殊的四棱柱:長方體、正方體。正方體的每個面都是正方形。

圓柱:上、下兩個面都是圓形,側面展開圖是長方形。

圓錐:底面是圓形,側面展開圖是扇形。

截面:用一個平面去截一個幾何體,截出的面。

球:用一個平面去截,截面圖形是圓形。

正方體的截面:可以是正方形、長方形、梯形、三角形。

圓柱體的截面:可以是長方形、圓形、橢圓形、三角形。

展開與折疊:兩個面出現在同一位置的展開圖形,是不可折疊的。

從三個方向看物體的形狀:正面看(主視圖)、左面看(側視圖)、上面看(俯視圖)