針對以往教學中的不足,我們要學會在制定教案的時候,找到合適得解決措施,沒有合理的思考,寫出的教案就很難給課堂帶來較高的活躍度,下面是范文社小編為您分享的方程的根教案5篇,感謝您的參閱。
方程的根教案篇1
設計說明
本節(jié)課的教學任務是使學生了解等式性質(zhì)(二),并會用這個性質(zhì)解方程。由于學生在探究等式性質(zhì)(一)時已經(jīng)具備了一定的學習經(jīng)驗,因此本節(jié)課的教學設計主要突出以下兩點:
1、在操作實踐中驗證等式性質(zhì)(二)
在教學中,通過學生的親身實踐,邊操作邊觀察邊總結(jié),使等式性質(zhì)(二)順利地生成,同時讓學生對此有直觀的理解,強化學習效果。
2、通過直觀圖理解解方程的過程
在指導學生利用等式性質(zhì)(二)解方程時,充分發(fā)揮了直觀圖的作用,加深學生對解方程的過程和依據(jù)的了解,提高學習效率。
課前準備
教師準備:
ppt課件
學生準備:
天平,若干個貼有標簽的砝碼
教學過程
猜想導入
師:誰能說出我們學過的等式性質(zhì)?
[學生回顧上節(jié)課學習的內(nèi)容,并匯報:等式兩邊同時加上(或減去)同一個數(shù),等式仍然成立]
引導學生猜想:等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式是否仍然成立呢?思考并在小組內(nèi)交流自己的想法,然后匯報。
設計意圖:學生已經(jīng)學過了等式兩邊都加上(或減去)同一個數(shù),等式仍然成立的性質(zhì)。上課伊始,先復習所學知識,并由此進行合理猜想,再自然地引入新課,直奔主題。
動手驗證,探究規(guī)律
師:大家的猜想對不對呢?我們來驗證一下。
1、(課件演示,學生操作)天平左側(cè)的砝碼重x克,右側(cè)放5克的砝碼,這時天平的指針指向正中央,說明了什么?你知道左側(cè)的砝碼重多少克嗎?怎樣用等式表示?(說明天平平衡,左側(cè)的砝碼重5克,x=5)
2、如果左側(cè)再加上2個x克的砝碼,右側(cè)再加上2個5克的砝碼,這時天平的指針指向正中央,說明了什么?你能寫出一個等式嗎?(說明天平平衡,3x=3×5)
3、如果左側(cè)有2個x克的砝碼,右側(cè)有2個10克的砝碼,這時天平的指針指向正中央,說明了什么?你能寫出一個等式嗎?(說明天平平衡,2x=20)
4、如果左側(cè)拿走一個x克的砝碼,右側(cè)拿走一個10克的`砝碼,這時天平的指針指向正中央,說明了什么?你能寫出一個等式嗎?(說明天平平衡,2x÷2=20÷2)
5、通過上面的游戲,你發(fā)現(xiàn)了什么?
小結(jié):等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立。
設計意圖:利用課件的演示和動手操作,讓學生體會天平兩側(cè)的變化情況,加深學生對等式的理解,體會等式的變化規(guī)律。
解方程
1、(課件出示教材70頁方程:4y=2000)
師:你們能求出這個方程的解嗎?
(學生先獨立嘗試,然后小組交流,并匯報)
預設
方法一:想?×4=2000,直接得出答案。
方法二:用等式性質(zhì)解方程,方程的兩邊都除以4,從而得出答案。
師:為什么方程的兩邊都除以4,依據(jù)是什么?
預設
生:依據(jù)是等式的兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立。
讓學生說出用等式性質(zhì)解方程的過程。
方程的根教案篇2
數(shù)學《一元二次方程》教案??
一、教材分析
1、教材的地位和作用
一元二次方程是中學教學的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學生學了實數(shù)與代數(shù)式的運算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學習一元二次方程的基礎,通過一元二次方程的學習,就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學習(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎,此外,學習一元二次方程對其他學科也有重要的意義。
2、教學目標及確立目標的依據(jù)
九年義務教育大綱對這部分的要求是:“使學生了解一元二次方程的概念”,依據(jù)教學大綱的要求及教材的內(nèi)容,針對學生的理解和接受知識的實際情況,以提高學生的素質(zhì)為主要目的而制定如下教學目標。
知識目標:使學生進一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標:通過一元二次方程概念的教學,培養(yǎng)學生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學生創(chuàng)造性思維和邏輯推理的能力。
德育目標:培養(yǎng)學生把感性認識上升到理性認識的辯證唯物主義的觀點。
3、重點,難點及確定重難點的依據(jù)
“一元二次方程”有著承上啟下的作用,在今后的學習中有廣泛的應用,因此本節(jié)課做為起始課的重點是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點。
二、教材處理
在教學中,我發(fā)現(xiàn)有的學生對概念背得很熟,但在準確和熟練應用方面較差,缺乏應變能力,針對學生中存在的這些問題,本節(jié)課突出對教學概念形成過程的教學,采用探索發(fā)現(xiàn)的方法研究概念,并引導學生進行創(chuàng)造性學習。
三、教學方法和學法
教學中,我運用啟發(fā)引導的方法讓學生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達到問題解決。
四、教學手段
采用投影儀
五、教學程序
1、新課導入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)
(2)列方程解應用題的方法,步驟?(并引例打基礎)
課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實際問題引出一元二次方程,可以幫助學生認識到一元二次方程是來源于客觀需要的)
設出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程
數(shù)學《一元二次方程》教案3三
一、教學目標
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿, 建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習慣。
二、教學重難點
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
難點:找對題目中的數(shù)量關(guān)系從而列出一元二次方程。
三、教學過程
(一)導入新課
師:同學們我們就要開始學習一元二次方程了,在開始講新課之前,我們首先來看一看第二十二章的這張圖片,圖片上有一個銅雕塑,有哪位同學能告訴我這是誰嗎?
生:老師,這是雷鋒叔叔。
師:對,這是遼寧省撫順市雷鋒紀念館前的雷鋒雕像,雷鋒叔叔一生樂于助人,奉獻了自己方便了他人,所以即使他去世了,也活在人們心中,所以人們才給他做一個雕塑紀念他,同學們是不是也要向雷鋒叔叔學習啊?
生:是的老師。
師:可是原來紀念館的工作人員在建造這座雕像的時候曾經(jīng)遇到了一個問題,也就是圖片下面的這個問題,同學們想不想為他們解決這個問題呢?
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。
(二)新課教學
師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學們的式子。
(下去巡視)
(三)小結(jié)作業(yè)
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
四、板書設計
五、教學反思
數(shù)學《一元二次方程》教案3二
教學目標
1. 了解整式方程和一元二次方程的概念;
2. 知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3. 通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學重點和難點:
重點:一元二次方程的概念和它的一般形式。
難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
教學建議:
1. 教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析
理解一元二次方程的定義:
是一元二次方程 的重要組成部分。方程 ,只有當 時,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合一元二次方程的定義。
(2)條件是用“關(guān)于 的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于 的一元二次方程 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的 項,且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當 時,它是一元一次方程 ;當 時,它是一元二次方程,解題時就會有不同的結(jié)果。
教學目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學難點和難點:
重點:
1.一元二次方程的有關(guān)概念
2.會把一元二次方程化成一般形式
難點: 一元二次方程的含義.
教學過程設計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學方法解決?(間接計算即列方程解應用題。
3.讓學生自己列出方程 ( x(x十5)=150 )
深入引導:方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的次數(shù)是幾。如果方程未知數(shù)的次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
3.強化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3: (2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
從以上4例讓學生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的次數(shù)是否是2。
4. 一元二次方程概念的延伸
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導學生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學生運用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強化概念(課本p6)
1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
方程的根教案篇3
(一)初步培養(yǎng)了學生平面解析幾何的思想和一般方法。
在初中,學生熟知一次函數(shù)y=kx+b(也可以看成是二次方程)的圖象是一條直線,但反過來任意畫一條,要同學們寫出方程表達式,學生剛開始會無從下手,從而激發(fā)學生學習的興趣。隨著教學的展開,讓學生逐步形成平面解析幾何的方法,如建立坐標啊,設點啊,建立關(guān)系式啊,得出方程啊等等,初步培養(yǎng)學生的平面解析幾何思維,為后面學習圓、橢圓和相關(guān)圓錐曲線打下良好的基礎。
(二)在教學中貫徹“精講多練”的教學改革探索。
我們都知道,對于職中的學生,基礎差,底子薄,理解能力差,動手能力差,要想讓學生學有所得,最好的辦法就是精講多練,提高學生的動手能力。因此在教學中,我們通常是由練習引入,簡單講講,一例一練,配以一定的鞏固提高題,最后還有配套作業(yè),做到每個內(nèi)容經(jīng)過三輪的'練習,讓學生能夠很容易的掌握。
(三)注意數(shù)形結(jié)合的教學。
解析幾何的特點就是形數(shù)結(jié)合,而形數(shù)結(jié)合的思想是一種重要的數(shù)學思想,是教學大綱中要求學生學習的內(nèi)容之一,所以在教學中要注意這種數(shù)學思想的教學。每一種直線方程的講解都進行畫圖演示,讓學生對每一種直線方程所需的條件根深蒂固,如點斜式一定要點和斜率;斜截式一定要斜率和在y軸上的截距;截距式一定要兩個坐標軸上的截距等等。并在直線方程的相互轉(zhuǎn)化過程中也配以圖形(請參考一般方程的課件)
(四)注重直線方程的承前啟后的作用。
教材承接了初中函數(shù)的圖像之后,并作為研究曲線(圓、圓錐曲線)之前,以之來介紹平面解析幾何的思想和一般方法,可見本節(jié)內(nèi)容所處的重要地位,學好直線對以后的學習尤為重要, 事實上,教材在研究了直線的方程和討論了直線的幾何性質(zhì)后,緊接著就以直線方程為基礎,進一步討論曲線與方程的一般概念。
方程的根教案篇4
教學內(nèi)容:
義務教育人教版數(shù)學五年級上冊67頁內(nèi)容。
教學目標:
知識目標:
1、通過演示操作理解天平平衡的原理。
2、初步理解方程的解和解方程的含義。
3、會檢驗一個具體的值是不是方程的解,掌握檢驗的格式。
能力目標:
1、提高學生的比較、分析的能力;
2、培養(yǎng)學生的合作交流的意識。
情感目標:
1、感受方程與現(xiàn)實生活的聯(lián)系。
2、愿意與別人合作交流。
教學重點:
理解方程的解和解方程的含義,會檢驗方程的解。
教學難點:
利用天平平衡的原理來檢驗方程的解。
關(guān)鍵:
天平與方程的聯(lián)系。
教具 :
課件
教學過程:
一、游戲鋪墊,引出課題(出示課件)
師:明明周末在超市玩起了稱糖果的稱,我們一起合作使稱保持平衡!
師:同學們反映真敏捷,能通過觀察馬上想出使天平保持平衡的策略。
生:從中你有什么想說的?或者你聯(lián)想到了什么?
生:只要兩邊都拿掉或增加相同數(shù)量的糖果,就能保持平衡;讓我想到了等式的性質(zhì)(全班一起口答:等式兩邊加上或減去同一個數(shù),左右兩邊任然相等;等式兩邊乘同一個數(shù),或除以同一個部位0的數(shù),左右兩邊任然相等)(板書“等式性質(zhì)”)
師過渡:是的,知識就是這樣被有心人所發(fā)現(xiàn)的。
二、探究新知
師:這里有個紙箱里面裝著一些足球,你猜會有幾個呢?(課件逐步出示)
再給你點信息,這幅圖誰能用一個方程來表示。
生列方程,并說說你是怎么想的。
1、解方程
師:在這個方程中,x的值是多少呢?(學生思考,小范圍交流)
匯報預設:①因為9-3=6②因為6+3=9所以x的值為6 所以x的值為6 (多少)
師引導:當然,我知道這么簡單的問題是難不住大家的,但是我們的思考不能停止,從今天開始我們將學習怎樣利用天平保持平衡的原理來尋求x的值,這種思考的方法到初中遇上更加復雜的方程時仍然會用到。
師:現(xiàn)在我們就將x+3=9這個方程轉(zhuǎn)換到天平上來?(黑板貼圖)
師:球在天平不好擺,我們可以用方塊來代替它。
自主嘗試:看著天平,如何去尋求x的值?
請用筆記錄下你的想法。
組織好語言上臺匯報你的想法。
教師統(tǒng)一書寫:
師介紹:求解x的過程我們在最前面寫“解”字。(板書寫“解”字)
追問:兩邊都拿掉3個,天平還能平衡嗎,兩邊還相等嗎?(貼圖展示)
為什么要減3個?(可以方程的一邊只剩x,就可以知道x=?)(再叫2-3個)
生活動:我們看著板書來說說是怎么成功得到x的值,每一步的依據(jù)是什么。(2-3個)
你學會了嗎?趕緊和你的同桌說一說方法。
2、強調(diào)格式:
師:這個求解的過程和以前遞等式有什么區(qū)別或相同的地方?
生:等號對齊;等號兩邊都要寫;最前面要寫解字
3、練習一:
師:按照大家借助天平運用等式性質(zhì)的想法,就是說當我們遇到方程33+x=65你也能求解? 解:33+x○( )=65○( )
x=( ) 那么x-4.5=10 呢?(學生獨立嘗試,一個學生板演)
生完成填空和獨立節(jié)解方程。(課件中校對)
4、介紹概念:像這些(課件中圈出來),使方程左右兩邊相等的未知數(shù)的值,
叫“方程的解”;舉例:x=3是方程x+3=9的解??
而求方程的解的過程,我們叫“解方程”(板書)
這些知識在數(shù)中有介紹,我們找到劃一劃讀一讀。(看書)
兩個詞都有解字,有什么區(qū)別呢?(“方程的解”中的“解”是名詞,它指能使方程左右兩邊相等的未知數(shù)的值,是一個數(shù)值;“解方程”中的“解”是動詞,它指求方程解的過程,是一個演算的過程.)
5、驗算:
師:剛才我們解出來x的值是不是正確的答案呢?你打算怎么檢驗?
生:放進去計算一下。
師:大家心里都有了想法,但方程的檢驗也是有一定格式的,下面我們到書本中來學習一下。 生自學書本后回答:根據(jù)等式性質(zhì),把x=6代入方程,看方程左右兩邊是否相等。 生活動:嘗試驗算一個方程的解,另一個放心里代入驗算。
6、小結(jié)
師:你學會了嗎?你會解怎樣的方程了?(含加法或減法)
解方程的步驟?(結(jié)合板書和課件)
生:解方程的步驟:
a)先寫“解:”。
b)方程左右兩邊同時加或減一個相同的數(shù),使方程左邊只剩x,方程左右兩邊相等。 c)求出x的值。
d)驗算。
四、鞏固練習
練習二:解方程比賽(書p67)
(1)100+x=250(2)x+12=31※(3) x -63=36
練習三:我是小法官:1.x=10是方程5+x=15的解( )。
2.x=10是方程x-5=15的解( )。
3. x=3是方程5x=15的解( )。
4.下面兩位同學誰對誰錯?
x-1.2=4 x+2.4=4.6
解:x-1.2+1.2=4-1.2=4.6-2.4
x=2.8 =2.2
師:談談你覺得解方程過程中有什么要提醒大家注意的?
生:注意等式性質(zhì)的正確運用!注意解方程時的格式!
練習四:看圖列方程并求解
五、課堂總結(jié)
師:我們這節(jié)課學習了什么?和大家來分享下!
板書設計:
解方程(含有加法或減法) 等式性質(zhì) 解:x+3-3 =9-解方程 (過程)學生板演天平貼圖
x=6 ?解 (值)檢驗:方程左邊=x+3
=6+3
=9
=方程右邊
所以,x=6是方程的解。
方程的根教案篇5
教學目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學難點和難點:
重點:
1.一元二次方程的有關(guān)概念
2.會把一元二次方程化成一般形式
難點:一元二次方程的含義.
教學過程設計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學方法解決?(間接計算即列方程解應用題。
3.讓學生自己列出方程( x(x十5)=150 )
深入引導:方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的次數(shù)是幾。如果方程未知數(shù)的次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
3.強化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
從以上4例讓學生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的.次數(shù)是否是2。
4.一元二次方程概念的延伸
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導學生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學生運用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強化概念(課本p6)
1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).